A007478 Dimension of primitive Vassiliev knot invariants of order n.
1, 1, 1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- D. Bar-Natan, On the Vassiliev Knot Invariants, Topology 34 (1995) 423-472.
- D. Bar-Natan, Bibliography of Vassiliev Invariants.
- Joan S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253-287; TeX source.
- D. J. Broadhurst, Conjectured enumeration of Vassiliev invariants, arXiv:q-alg/9709031, 1997.
- S. Chmutov and S. Duzhin, A lower bound for the number of Vassiliev knot invariants, Topology and its Applications, Volume 92, Number 3, 14 April 1999, pp. 201-223(23).
- Jan Kneissler, The number of primitive Vassiliev invariants of degree up to 12, arXiv:q-alg/9706022, 1997.
- T. Ohtsuki (ed.), Problems on invariants of knots and 3-manifolds, arXiv:math/0406190 [math.GT], (2004); see Table 2 on p.407.
- Index entries for sequences related to knots
Formula
Broadhurst gives a conjectured g.f.
Comments