cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014668 a(1) = 1, a(n) = Sum_{k=1..n-1} Sum_{d|k} a(d).

Original entry on oeis.org

1, 1, 3, 7, 16, 33, 71, 143, 295, 594, 1206, 2413, 4871, 9743, 19559, 39138, 78428, 156857, 314047, 628095, 1256809, 2513693, 5028594, 10057189, 20116979, 40233975, 80472823, 160945945, 321901713, 643803427, 1287627061, 2575254123, 5150547536, 10301096282
Offset: 1

Views

Author

Benoit Cloitre, Jun 24 2003

Keywords

Comments

Equals eigensequence of triangle A010766 and starting (1, 3, 7, 16, 33, ...) = row sums of triangle A163313. - Gary W. Adamson, Jul 30 2009. Gary Adamson's comment may be restated as "This sequence shifts left by one place under the floor transform." - N. J. A. Sloane, Feb 05 2016
The Gould & Quaintance reference, published in 2007, says incorrectly that this sequence is not in the OEIS. - Olivier Gérard, Oct 20 2011

Crossrefs

Cf. A010766, A163313. - Gary W. Adamson, Jul 30 2009

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=1, 1, add(add(a(d), d=divisors(k)), k=1..n-1))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 28 2011
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[Sum[a[d], {d, Divisors[k]}], {k, 1, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 07 2015 *)
  • PARI
    // an=vector(100); a(n)=if(n<0,0,an[n]); // an[1]=1; for(n=2,100,an[n]=sum(k=1,n-1,sumdiv(k,d,a(d))))

Formula

a(n) is asymptotic to c*2^n where c = 0.59960731361450033896934...
a(n+1) = Sum_{k=1..n} a(k)*floor(n/k). - Franklin T. Adams-Watters, Mar 21 2017
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020