cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014707 a(4n) = 0, a(4n+2) = 1, a(2n+1) = a(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0
Offset: 0

Views

Author

Keywords

Comments

The regular paper-folding (or dragon curve) sequence.
It appears that the sequence of run lengths is A088431. - Dimitri Hendriks, May 06 2010
Runs of three consecutive ones appear around positions n = 22, 46, 54, 86, 94, 118, 150, 174, 182, ..., or for n of the form 2^(k+3)*(4*t+3)-2, k >= 0, t >= 0. - Vladimir Shevelev, Mar 19 2011

References

  • Guy Melançon, Factorizing infinite words using Maple, MapleTech journal, Vol. 4, No. 1, 1997, pp. 34-42, esp. p. 36.

Crossrefs

Equals 1 - A014577, which see for further references. Also a(n) = A038189(n+1).
The following are all essentially the same sequence: A014577, A014707, A014709, A014710, A034947, A038189, A082410.

Programs

  • Haskell
    a014707 n = a014707_list !! n
    a014707_list = f 0 $ cycle [0,0,1,0] where
       f i (x:_:xs) = x : a014707 i : f (i+1) xs
    -- Reinhard Zumkeller, Sep 28 2011
    
  • Maple
    nmax:=92: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := n mod 2 od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Jan 28 2013
    # second Maple program:
    a:= proc(n) option remember;
         `if`(n::even, irem(n/2, 2), a((n-1)/2))
        end:
    seq(a(n), n=0..92);  # Alois P. Heinz, Jun 27 2022
  • Mathematica
    a[n_ /; Mod[n, 4] == 0] = 0; a[n_ /; Mod[n, 4] == 2] = 1; a[n_ /; Mod[n, 2] == 1] := a[n] = a[(n - 1)/2]; Table[a[n],{n,0,92}] (* Jean-François Alcover, May 17 2011 *)
    (1 - JacobiSymbol[-1, Range[100]])/2 (* Paolo Xausa, May 26 2024 *)
  • PARI
    a(n)=n+=1;my(h=bitand(n,-n));n=bitand(n,h<<1);n!=0; \\ Joerg Arndt, Apr 09 2021
  • Python
    def A014707(n):
        s = bin(n+1)[2:]
        m = len(s)
        i = s[::-1].find('1')
        return int(s[m-i-2]) if m-i-2 >= 0 else 0 # Chai Wah Wu, Apr 08 2021
    
  • Python
    def A014707(n): n+=1; h=n&-n; n=n&(h<<1); return int(n!=0)
    print([A014707(n) for n in range(93)]) # Michael S. Branicky, Mar 29 2024 after Joerg Arndt
    

Formula

a(A091072(n)-1) = 0; a(A091067(n)-1) = 1. - Reinhard Zumkeller, Sep 28 2011 [Adjusted to match offset by Peter Munn, Jul 01 2022]
a(n) = (1-Jacobi(-1,n+1))/2 (cf. A034947). - N. J. A. Sloane, Jul 27 2012 [Adjusted to match offset by Peter Munn, Jul 01 2022]
Set a=0, b=1, S(0)=a, S(n+1) = S(n)aF(S(n)), where F(x) reverses x and then interchanges a and b; sequence is limit S(infinity).
a((2*n+1)*2^p-1) = n mod 2, p >= 0. - Johannes W. Meijer, Jan 28 2013
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/2. - Amiram Eldar, Aug 31 2024

Extensions

More terms from Scott C. Lindhurst (ScottL(AT)alumni.princeton.edu)