A014753 Primes p==1 (mod 6) such that 3 and -3 are both cubes (one implies other) modulo p.
61, 67, 73, 103, 151, 193, 271, 307, 367, 439, 499, 523, 547, 577, 613, 619, 643, 661, 727, 757, 787, 853, 919, 967, 991, 997, 1009, 1021, 1093, 1117, 1249, 1303, 1321, 1399, 1531, 1543, 1549, 1597, 1609, 1621, 1669, 1759, 1783, 1861, 1867
Offset: 1
References
- K. Ireland and M. Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag. Exercise 23, p. 135.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
p6 = Select[6*Range[0, 400]+1, PrimeQ]; Select[p6, (Reduce[3 == k^3+m*#, {k, m}, Integers] =!= False)&] (* Jean-François Alcover, Feb 20 2014 *)
-
PARI
forprime(p=1, 9999, p%6==1&&ispower(Mod(3, p), 3)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
-
PARI
is_A014753(p)={p%6==1&&ispower(Mod(3, p), 3)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
Extensions
Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014
Comments