cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014753 Primes p==1 (mod 6) such that 3 and -3 are both cubes (one implies other) modulo p.

Original entry on oeis.org

61, 67, 73, 103, 151, 193, 271, 307, 367, 439, 499, 523, 547, 577, 613, 619, 643, 661, 727, 757, 787, 853, 919, 967, 991, 997, 1009, 1021, 1093, 1117, 1249, 1303, 1321, 1399, 1531, 1543, 1549, 1597, 1609, 1621, 1669, 1759, 1783, 1861, 1867
Offset: 1

Views

Author

Keywords

Comments

Primes of the form x^2+xy+61y^2, whose discriminant is -243. - T. D. Noe, May 17 2005
Primes of the form (x^2 + 243*y^2)/4. - Arkadiusz Wesolowski, May 30 2015

References

  • K. Ireland and M. Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag. Exercise 23, p. 135.

Crossrefs

Programs

  • Mathematica
    p6 = Select[6*Range[0, 400]+1, PrimeQ]; Select[p6, (Reduce[3 == k^3+m*#, {k, m}, Integers] =!= False)&] (* Jean-François Alcover, Feb 20 2014 *)
  • PARI
    forprime(p=1, 9999, p%6==1&&ispower(Mod(3, p), 3)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
    
  • PARI
    is_A014753(p)={p%6==1&&ispower(Mod(3, p), 3)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014

Extensions

Offset changed from 0 to 1 by Bruno Berselli, Feb 20 2014