A014754 Primes p == 1 mod 8 such that 2 and -2 are both 4th powers (one implies other) mod p.
73, 89, 113, 233, 257, 281, 337, 353, 577, 593, 601, 617, 881, 937, 1033, 1049, 1097, 1153, 1193, 1201, 1217, 1249, 1289, 1433, 1481, 1553, 1601, 1609, 1721, 1753, 1777, 1801, 1889, 1913, 2089, 2113, 2129, 2273, 2281, 2393, 2441, 2473, 2593, 2657, 2689
Offset: 1
Keywords
Links
- N. J. A. Sloane and Vincenzo Librandi, Table of n, a(n) for n = 1..9769 (the first 1000 terms were found by Vincenzo Librandi)
Programs
-
PARI
A014754(m) = local(p,s,x,z); forprime(p = 3,m,s = []; for(x = 0,p-1, if(x^4%p == 2%p,s = concat(s,[x]))); z = matsize(s)[2]; if(z>2,print1(p,",")))
-
PARI
{a(n) = local(m, c, x); if( n<1, 0, c = 0; m = 1; while( c
Michael Somos, Mar 22 2008 */ -
PARI
forprime(p=1, 9999, p%8==1&&ispower(Mod(2, p), 4)&&print1(p", ")) \\ M. F. Hasler, Feb 18 2014
-
PARI
is_A014754(p)={p%8==1&&ispower(Mod(2, p), 4)&&isprime(p)} \\ M. F. Hasler, Feb 18 2014
Extensions
Removed erroneous Mma program; extended b-file using first PARI program of M. F. Hasler. - N. J. A. Sloane, Jun 06 2014
Comments