cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014769 Squares of odd pentagonal numbers.

Original entry on oeis.org

1, 25, 1225, 2601, 13689, 21025, 61009, 82369, 180625, 227529, 423801, 511225, 855625, 1002001, 1555009, 1782225, 2614689, 2948089, 4141225, 4609609, 6255001, 6890625, 9090225, 9928801, 12794929, 13875625, 17530969, 18896409, 23474025, 25170289, 30813601
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A014632.
Odd terms of A100255.

Programs

  • Mathematica
    Select[Table[PolygonalNumber[5,n]^2, {n,0, 61}],OddQ] (* James C. McMahon, Dec 24 2023 *)
    Select[PolygonalNumber[5,Range[70]],OddQ]^2 (* or *) LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1},{1,25,1225,2601,13689,21025,61009,82369,180625},40] (* Harvey P. Dale, Apr 07 2025 *)
  • PARI
    Vec((1 + 24*x + 1196*x^2 + 1280*x^3 + 6294*x^4 + 1976*x^5 + 2828*x^6 + 176*x^7 + 49*x^8) / ((1 - x)^5*(1 + x)^4) + O(x^40)) \\ Colin Barker, Nov 20 2018

Formula

a(n) = A014632(n)^2. - Sean A. Irvine, Nov 20 2018
From Colin Barker, Nov 20 2018: (Start)
G.f.: (1 + 24*x + 1196*x^2 + 1280*x^3 + 6294*x^4 + 1976*x^5 + 2828*x^6 + 176*x^7 + 49*x^8) / ((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
a(n) = 36*n^4 + 60*n^3 + 37*n^2 + 10*n + 1 for n even.
a(n) = 36*n^4 - 12*n^3 + n^2 for n odd.
(End)

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)