cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003841 Order of universal Chevalley group D_2(q), q = prime power.

Original entry on oeis.org

36, 576, 3600, 14400, 112896, 254016, 518400, 1742400, 4769856, 16646400, 23970816, 46785600, 147476736, 243360000, 386358336, 593409600, 885657600, 1071645696, 2561979456, 4744454400, 6314527296
Offset: 1

Views

Author

Keywords

Comments

Numbers given so far divided by 36 (except the first) are all members of A014796. - Ralf Stephan, Feb 07 2004
Is a(n) = A007531( A000961(n)+1 )^2? - Ralf Stephan, Feb 08 2004 [Answer: Yes. This is equivalent to the first formula below. - Amiram Eldar, Jun 24 2025]

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[q, 2], {q, Select[Range[50], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = D(A000961(n+1),2) where D(q,n) is defined in A003830. - Sean A. Irvine, Sep 17 2015

A014795 Squares of odd tetrahedral numbers.

Original entry on oeis.org

1, 1225, 27225, 207025, 938961, 3136441, 8555625, 20205025, 42837025, 83521321, 152300281, 262926225, 433680625, 688275225, 1056835081, 1576963521, 2294889025, 3266694025, 4559625625, 6253488241, 8442118161, 11234940025, 14758605225, 19158712225, 24601608801
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[((4*n+1)*(4*n+2)*(4*n+3)/6)^2, {n, 0, 40}] (* Amiram Eldar, Mar 07 2022 *)

Formula

From Amiram Eldar, Mar 07 2022: (Start)
a(n) = A015219(n)^2 = ((4*n+1)*(4*n+2)*(4*n+3)/6)^2.
Sum_{n>=0} 1/a(n) = 9*Pi*(Pi-3)/4. (End)

Extensions

More terms from Erich Friedman
More terms from Amiram Eldar, Mar 07 2022
Showing 1-2 of 2 results.