cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014915 a(1)=1, a(n) = n*3^(n-1) + a(n-1).

Original entry on oeis.org

1, 7, 34, 142, 547, 2005, 7108, 24604, 83653, 280483, 930022, 3055786, 9964519, 32285041, 104029576, 333612088, 1065406345, 3389929279, 10750918570, 33996147910, 107218620331, 337346390797, 1059110761804, 3318547053652, 10379285465677, 32408789311195, 101039166676078
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [((2*n - 1)*3^n + 1)/4: n in [1..30]]; // Vincenzo Librandi, Jun 09 2011
  • Mathematica
    LinearRecurrence[{7, -15, 9}, {1, 7, 34}, 25] (* L. Edson Jeffery, May 08 2015 *)

Formula

From Henry Bottomley, Dec 18 2000: (Start)
a(n) = ((2*n-1)*3^n + 1)/4.
a(n) = 7*a(n-1) - 15*a(n-2) + 9*a(n-3) for n > 3.
a(n) = 1 + 2*3 + 3*3^2 + .. + n*3^(n-1).
a(n) = a(n-1) + A027471(n+1). (End)
G.f.: x/((1-x)*(1-3*x)^2). - Colin Barker, Jul 28 2012
a(n) = f^n(n)/2 with f(x) = 3*x-1. - Glen Gilchrist, Apr 10 2019
E.g.f.: exp(x)*(1 + exp(2*x)*(6*x - 1))/4. - Stefano Spezia, May 14 2024
a(n) = 6*a(n-1) - 9*a(n-2) + 1 for n > 2. - Elmo R. Oliveira, May 24 2025