A015008 q-factorial numbers for q=9.
1, 1, 10, 910, 746200, 5507702200, 365876657146000, 218747042884536166000, 1177042838234827583459440000, 57001313848230245122464621625840000, 24843911488189148287648216529610193612000000, 97453533413342456299179976631323547842824103012000000
Offset: 0
Links
Crossrefs
Programs
-
Magma
[n le 1 select 1 else (9^n - 1)*Self(n-1)/8: n in [1..15]]; // Vincenzo Librandi, Oct 26 2012
-
Mathematica
RecurrenceTable[{a[1]==1, a[n]==((9^n - 1) * a[n-1])/8}, a, {n, 15}] (* Vincenzo Librandi, Oct 26 2012 *) Table[QFactorial[n, 9], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)
Formula
a(n) = Product_{k=1..n} (9^k - 1) / (9 - 1).
a(0) = 1, a(n) = (9^n - 1)*a(n-1)/8. - Vincenzo Librandi, Oct 26 2012
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A002452(k).
a(n) ~ c * 3^(n*(n+1))/8^n, where c = A132037. (End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 08 2021