A015109 Triangle of Gaussian (or q-binomial) coefficients for q = -2.
1, 1, 1, 1, -1, 1, 1, 3, 3, 1, 1, -5, 15, -5, 1, 1, 11, 55, 55, 11, 1, 1, -21, 231, -385, 231, -21, 1, 1, 43, 903, 3311, 3311, 903, 43, 1, 1, -85, 3655, -25585, 56287, -25585, 3655, -85, 1, 1, 171, 14535, 208335, 875007, 875007, 208335, 14535, 171, 1, 1, -341, 58311
Offset: 0
Examples
From _Roger L. Bagula_, Feb 10 2009: (Start) 1; 1, 1; 1, -1, 1; 1, 3, 3, 1; 1, -5, 15, -5, 1; 1, 11, 55, 55, 11, 1; 1, -21, 231, -385, 231, -21, 1; 1, 43, 903, 3311, 3311, 903, 43, 1; 1, -85, 3655, -25585, 56287, -25585, 3655, -85, 1; 1, 171, 14535, 208335, 875007, 875007, 208335, 14535, 171, 1; (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- J. A. de Azcarraga and J. A. Macfarlane, Group Theoretical Foundations of Fractional Supersymmetry, arxiv:hep-th/9506177 (1995).
- S. Fu, V. Reiner, D. Stanton and N. Thiem, The negative q-binomial, arXiv:1108.4702 [math.CO], 2011.
- R. Parthasarathy, q-Fermionic Numbers and Their Roles in Some Physical Problems, arxiv:quant-ph/0403216, 2004.
Crossrefs
Cf. A015152 (row sums).
Cf. A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24).
Programs
-
Magma
qBinomial:= func< n,k,q | k eq 0 select 1 else (&*[(1-q^(n-j+1))/(1-q^j): j in [1..k]]) >; [qBinomial(n,k,-2): k in [0..n], n in [0..10]]; // A015109 // G. C. Greubel, Nov 30 2021
-
Maple
A015109 := proc(n, k) mul( ((-2)^(1+n-i)-1)/((-2)^i-1) ,i=1..k) ; end proc: # R. J. Mathar, Mar 12 2013
-
Mathematica
T[n_, k_, q_]:= Product[(1 - q^(n-j+1))/(1 - q^j), {j, k}]; Table[T[n,k,-2], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Feb 10 2009 *)(* modified by G. C. Greubel, Nov 30 2021 *) Table[QBinomial[n, k, -2], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, Apr 09 2016 *)
-
PARI
T015109(n, k, q=-2)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) \\ M. F. Hasler, Nov 04 2012
-
Sage
flatten([[q_binomial(n,k,-2) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Nov 30 2021
Formula
T(n, k) = q-binomial(n, k, -2).
T(n, k, q) = Product_{j=1..k} ( (1 - q^(n-j+1))/(1 - q^j) ), for q = -2. - Roger L. Bagula, Feb 10 2009
Extensions
Edited by M. F. Hasler, Nov 04 2012
Comments