cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015298 Gaussian binomial coefficient [ n,4 ] for q = -10.

Original entry on oeis.org

1, 9091, 91828191, 917364637191, 9174563736547191, 91744720010017447191, 917448117456547208447191, 9174480257209191175298447191, 91744803489448201844894398447191
Offset: 4

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=4; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
  • Mathematica
    Table[QBinomial[n, 4, -10], {n, 4, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • Sage
    [gaussian_binomial(n,4,-10) for n in range(4,13)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: -x^4 / ( (x-1)*(10*x+1)*(1000*x+1)*(100*x-1)*(10000*x-1) ). - R. J. Mathar, Aug 03 2016