cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015312 Gaussian binomial coefficient [ n,5 ] for q = -7.

Original entry on oeis.org

1, -14706, 252313293, -4228301370600, 71094673339606302, -1194817080145423511412, 20081461365765141084602686, -337508711324786004755672161800, 5672509895284807570626050787828903
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Programs

  • Magma
    r:=5; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
  • Mathematica
    QBinomial[Range[5,20],5,-7] (* Harvey P. Dale, Feb 27 2012 *)
  • Sage
    [gaussian_binomial(n,5,-7) for n in range(5,14)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: -x^5 / ( (x-1)*(16807*x+1)*(49*x-1)*(343*x+1)*(7*x+1)*(2401*x-1) ). - R. J. Mathar, Aug 04 2016