cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015321 Gaussian binomial coefficient [ n,5 ] for q = -13.

Original entry on oeis.org

1, -344772, 128773405047, -47790911017216080, 17745052029585350965782, -6588595858168804130787130344, 2446300028783605805772822454177234, -908294062111964496034866469968025332240
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Mathematica
    Table[QBinomial[n, 5, -13], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    A015321(n,r=5,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,5,-13) for n in range(5,13)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = Product_{i=1..5} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012