A015321 Gaussian binomial coefficient [ n,5 ] for q = -13.
1, -344772, 128773405047, -47790911017216080, 17745052029585350965782, -6588595858168804130787130344, 2446300028783605805772822454177234, -908294062111964496034866469968025332240
Offset: 5
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
Crossrefs
Programs
-
Mathematica
Table[QBinomial[n, 5, -13], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
-
PARI
A015321(n,r=5,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
-
Sage
[gaussian_binomial(n,5,-13) for n in range(5,13)] # Zerinvary Lajos, May 27 2009
Formula
a(n) = Product_{i=1..5} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012