cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A015370 Gaussian binomial coefficient [ n,8 ] for q=-13.

Original entry on oeis.org

1, 757464241, 621564749363392901, 506798783502833908602716981, 413425812255544017749839936272484623, 337243227617163445881817693983677965955870943, 275099718210633054941121644140453635236773122223471523
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-12: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369. - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -13], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015370(n,r=8,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-13) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015385 Gaussian binomial coefficient [ n,9 ] for q=-13.

Original entry on oeis.org

1, -9847035132, 105044442632566365137, -1113436927250681654567602842120, 11807854622717155763702496765310830475383, -125216049699851612689080581288579246248342359563916
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -13],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • PARI
    A015385(n,r=9,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    

Formula

a(n) = Product_{i=1..9} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015402 Gaussian binomial coefficient [ n,10 ] for q=-13.

Original entry on oeis.org

1, 128011456717, 17752510805031727164870, 2446220929187500105890055171302510, 337244135881870906696294510219932684378716373, 46491842741544248966048667175076748587505712393943779761
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401. - Vincenzo Librandi, Nov 05 2012

Programs

  • Magma
    r:=10; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 05 2012
  • Mathematica
    Table[QBinomial[n, 10, -13], {n, 10, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
  • PARI
    A015402(n,r=10,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    
  • Sage
    [gaussian_binomial(n,10,-13) for n in range(10,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015129 Triangle of (Gaussian) q-binomial coefficients for q = -13.

Original entry on oeis.org

1, 1, 1, 1, -12, 1, 1, 157, 157, 1, 1, -2040, 26690, -2040, 1, 1, 26521, 4508570, 4508570, 26521, 1, 1, -344772, 761974851, -9900819720, 761974851, -344772, 1, 1, 4482037, 128773405047, 21752862899691, 21752862899691, 128773405047, 4482037, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T(n,k) = T(n,n-k); k=0,...,n; n=0,1,...) or square array (A(n,r) = A(r,n) = T(n+r,r), read by antidiagonals). The diagonals of the former, resp. rows (or columns) of the latter, are: A000012 (all 1's), A015000 (q-integers for q=-13), A015265 (k=2), A015286 (k=3), A015303 (k=4), A015321 (k=5), A015337 (k=6), A015355 (k=7), A015370 (k=8), A015385 (k=9), A015402 (k=10), A015422 (k=11), A015438 (k=12). - M. F. Hasler, Nov 04 2012

Examples

			The square array looks as follows:
1    1          1              1                      1               1       ...
1   -12        157           -2040                  26521          -344772    ...
1   157       26690         4508570               761974851      128773405047 ...
1  -2040     4508570      -9900819720           21752862899691        ...
1  26521    761974851    21752862899691       621305270140974342      ...
1 -344772 128773405047 -47790911017216080  17745052029585350965782    ...
(...)
		

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24). - M. F. Hasler, Nov 05 2012

Programs

  • Magma
    qBinomial:= func< n,k,q | k eq 0 select 1 else (&*[(1 -q^(n-j+1))/(1 -q^j): j in [1..k]]) >;
    [qBinomial(n,k,-13): k in [0..n], n in [0..10]]; // A015129 // G. C. Greubel, Dec 01 2021
    
  • Mathematica
    Flatten[Table[QBinomial[x,y,-13],{x,0,10},{y,0,x}]] (* Harvey P. Dale, Jul 12 2014 *)
  • PARI
    A015129(n, r, q=-13)=prod(i=1, r, (q^(1+n-i+r)-1)/(q^i-1)) \\ (Indexing is that of the square array: n,r=0,1,2,...) - M. F. Hasler, Nov 03 2012
    
  • Sage
    flatten([[q_binomial(n,k,-13) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 01 2021

Formula

As a triangle, T(n, k) = Product_{i=1..k} ((-13)^(1+n-i)-1)/((-13)^i-1), with 0 <= k <= n = 0,1,2,...

A015265 Gaussian binomial coefficient [ n,2 ] for q = -13.

Original entry on oeis.org

1, 157, 26690, 4508570, 761974851, 128773405047, 21762709934980, 3677897920745140, 621564749363392901, 105044442632566365137, 17752510805031727164870, 3000174326048697741925710, 507029461102251552321630151, 85687978926280231101185088427
Offset: 2

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,2] for q=-2,...,-12: A015249, A015251, A015253, A015255, A015257 A015258, A015259, A015260, A015261, A015262, A015264.
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    I:=[1,157,26690]; [n le 3 select I[n] else 157*Self(n-1)+2041*Self(n-2)-2197*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Oct 28 2012
    
  • Mathematica
    Table[QBinomial[n, 2, -13], {n, 2, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • PARI
    A015265(n,q=-13)=(1-q^n)*(q^(n-1)-1)/2352 \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,2,-13) for n in range(2,14)] # Zerinvary Lajos, May 27 2009
    

Formula

G.f.: x^2/((1-x)*(1+13*x)*(1-169*x)). - Ralf Stephan, Apr 01 2004
a(2) = 1, a(3) = 157, a(4) = 26690, a(n) = 157*a(n-1) + 2041*a(n-2) - 2197*a(n-3). - Vincenzo Librandi, Oct 28 2012
a(n) = (1/2352)*( (1 - (-13)^n)*((-13)^(n-1) - 1) ). - M. F. Hasler, Nov 03 2012

A015286 Gaussian binomial coefficient [ n,3 ] for q = -13.

Original entry on oeis.org

1, -2040, 4508570, -9900819720, 21752862899691, -47790911017216080, 104996653267533662740, -230677643550873536294640, 506798783502833908602716981, -1113436927250681654567602842120
Offset: 3

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

Examples

			A015286(7) = 21752862899691 = A015303(7),
A015286(8) = -47790911017216080 = A015321(8),
A015286(9) = 104996653267533662740 = A015337(9). - _M. F. Hasler_, Nov 03 2012
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Fourth row (r=3) or column (resp. diagonal) in A015129 (read as square array resp. triangle). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=3; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
  • Mathematica
    QBinomial[Range[3,15],3,-13] (* Harvey P. Dale, Jun 21 2012 *)
    Table[QBinomial[n, 3, -13], {n, 3, 20}] (* Vincenzo Librandi, Oct 28 2012 *)
  • PARI
    A015286(n,r=3,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    
  • Sage
    [gaussian_binomial(n,3,-13) for n in range(3,13)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = Product_{i=1..3} ((-13)^(n-i+1) - 1)/((-13)^i - 1). - M. F. Hasler, Nov 03 2012
G.f.: x^3 / ( (x-1)*(2197*x+1)*(13*x+1)*(169*x-1) ). - R. J. Mathar, Aug 03 2016

A015303 Gaussian binomial coefficient [ n,4 ] for q = -13.

Original entry on oeis.org

1, 26521, 761974851, 21752862899691, 621305270140974342, 17745052029585350965782, 506816536013640476467362442, 14475186854407942097510802411322
Offset: 4

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

Examples

			To illustrate the relation qC(n,r)=qC(n,n-r), here with r=4, n=r+1...r+3:
A015303(5) = 26521 = A015000(5),
A015303(6) = 761974851 = A015265(6),
A015303(7) = 21752862899691 = A015286(7).
		

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. q-integers and Gaussian binomial coefficients [n,r] for q=-13: A015000, A015265 (r=2), A015286 (r=3), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Fifth row (r=4) or column (resp. diagonal) of A015129, read as square (resp. triangular) array.

Programs

  • Mathematica
    Table[QBinomial[n, 4, -13], {n, 4, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    A015303(n,r=4,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,4,-13) for n in range(4,12)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = product_{i=1..4} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
G.f.: -x^4 / ( (x-1)*(169*x-1)*(2197*x+1)*(13*x+1)*(28561*x-1) ). - R. J. Mathar, Aug 03 2016

A015337 Gaussian binomial coefficient [ n,6 ] for q = -13.

Original entry on oeis.org

1, 4482037, 21762709934980, 104996653267533662740, 506816536013640476467362442, 2446300028783605805772822454177234, 11807825441932996339362317150047214843540
Offset: 6

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Mathematica
    Table[QBinomial[n, 6, -13], {n, 6, 10}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    A015337(n,r=6,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,6,-13) for n in range(6,13)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = Product_{i=1..6} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015355 Gaussian binomial coefficient [ n,7 ] for q=-13.

Original entry on oeis.org

1, -58266480, 3677897920745140, -230677643550873536294640, 14475186854407942097510802411322, -908294062111964496034866469968025332240
Offset: 7

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=7; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 02 2012
    
  • Mathematica
    Table[QBinomial[n, 7, -13], {n, 7, 16}] (* Vincenzo Librandi, Nov 02 2012 *)
  • PARI
    A015355(n,r=7,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,7,-13) for n in range(7,13)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = Product_{i=1..7} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015422 Gaussian binomial coefficient [ n,11 ] for q=-13.

Original entry on oeis.org

1, -1664148937320, 3000174326048697741925710, -5374347381421937558314402513609688760, 9632029764916740618771445568833182996026908640493, -17262095767026556801586191040816999767731925288888540910160480
Offset: 11

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=11; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 06 2012
  • Mathematica
    Table[QBinomial[n, 11, -13], {n, 11, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
  • PARI
    A015422(n,r=11,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    
  • Sage
    [gaussian_binomial(n,11,-13) for n in range(11,16)] # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = Product_{i=1..11} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
Showing 1-10 of 13 results. Next