cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A015370 Gaussian binomial coefficient [ n,8 ] for q=-13.

Original entry on oeis.org

1, 757464241, 621564749363392901, 506798783502833908602716981, 413425812255544017749839936272484623, 337243227617163445881817693983677965955870943, 275099718210633054941121644140453635236773122223471523
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-12: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369. - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -13], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015370(n,r=8,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-13) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015385 Gaussian binomial coefficient [ n,9 ] for q=-13.

Original entry on oeis.org

1, -9847035132, 105044442632566365137, -1113436927250681654567602842120, 11807854622717155763702496765310830475383, -125216049699851612689080581288579246248342359563916
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -13],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • PARI
    A015385(n,r=9,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    

Formula

a(n) = Product_{i=1..9} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015388 Gaussian binomial coefficient [ n,10 ] for q=-3.

Original entry on oeis.org

1, 44287, 2941985410, 167517069529030, 10015359787639069513, 588973263031690760850991, 34826053765400471578213696840, 2055503791013087031667210071738520, 121393945396362834176064326157233601646
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402.

Programs

  • Magma
    r:=10; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -3], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-3) for n in range(10,18)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012

A015129 Triangle of (Gaussian) q-binomial coefficients for q = -13.

Original entry on oeis.org

1, 1, 1, 1, -12, 1, 1, 157, 157, 1, 1, -2040, 26690, -2040, 1, 1, 26521, 4508570, 4508570, 26521, 1, 1, -344772, 761974851, -9900819720, 761974851, -344772, 1, 1, 4482037, 128773405047, 21752862899691, 21752862899691, 128773405047, 4482037, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T(n,k) = T(n,n-k); k=0,...,n; n=0,1,...) or square array (A(n,r) = A(r,n) = T(n+r,r), read by antidiagonals). The diagonals of the former, resp. rows (or columns) of the latter, are: A000012 (all 1's), A015000 (q-integers for q=-13), A015265 (k=2), A015286 (k=3), A015303 (k=4), A015321 (k=5), A015337 (k=6), A015355 (k=7), A015370 (k=8), A015385 (k=9), A015402 (k=10), A015422 (k=11), A015438 (k=12). - M. F. Hasler, Nov 04 2012

Examples

			The square array looks as follows:
1    1          1              1                      1               1       ...
1   -12        157           -2040                  26521          -344772    ...
1   157       26690         4508570               761974851      128773405047 ...
1  -2040     4508570      -9900819720           21752862899691        ...
1  26521    761974851    21752862899691       621305270140974342      ...
1 -344772 128773405047 -47790911017216080  17745052029585350965782    ...
(...)
		

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24). - M. F. Hasler, Nov 05 2012

Programs

  • Magma
    qBinomial:= func< n,k,q | k eq 0 select 1 else (&*[(1 -q^(n-j+1))/(1 -q^j): j in [1..k]]) >;
    [qBinomial(n,k,-13): k in [0..n], n in [0..10]]; // A015129 // G. C. Greubel, Dec 01 2021
    
  • Mathematica
    Flatten[Table[QBinomial[x,y,-13],{x,0,10},{y,0,x}]] (* Harvey P. Dale, Jul 12 2014 *)
  • PARI
    A015129(n, r, q=-13)=prod(i=1, r, (q^(1+n-i+r)-1)/(q^i-1)) \\ (Indexing is that of the square array: n,r=0,1,2,...) - M. F. Hasler, Nov 03 2012
    
  • Sage
    flatten([[q_binomial(n,k,-13) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 01 2021

Formula

As a triangle, T(n, k) = Product_{i=1..k} ((-13)^(1+n-i)-1)/((-13)^i-1), with 0 <= k <= n = 0,1,2,...

A015321 Gaussian binomial coefficient [ n,5 ] for q = -13.

Original entry on oeis.org

1, -344772, 128773405047, -47790911017216080, 17745052029585350965782, -6588595858168804130787130344, 2446300028783605805772822454177234, -908294062111964496034866469968025332240
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Mathematica
    Table[QBinomial[n, 5, -13], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    A015321(n,r=5,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,5,-13) for n in range(5,13)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = Product_{i=1..5} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015390 Gaussian binomial coefficient [ n,10 ] for q=-4.

Original entry on oeis.org

1, 838861, 938250090141, 968690748238618461, 1019729183363623510391901, 1068220365220113899181567068253, 1120383768613759382944995805859747933, 1174735830441360695151745376566623493806173, 1231818594183047090443637654682442929123639613533
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=10; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -4], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-4) for n in range(10,17)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: x^10 / ((x-1) * (4*x+1) * (16*x-1) * (64*x+1) * (256*x-1) * (1024*x+1) * (4096*x-1) * (16384*x+1) * (65536*x-1) * (262144*x+1) * (1048576*x-1)). - Colin Barker, Jan 13 2014

A015391 Gaussian binomial coefficient [ n,10 ] for q=-5.

Original entry on oeis.org

1, 8138021, 82784230211046, 802023560334345174046, 7844813030956382105126218421, 76584995059524711257676812461230921, 747948211058777330441088769852487456090296, 7304088256300765454892487244083619479306573590296
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402.

Programs

  • Magma
    r:=10; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -5], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-5) for n in range(10,17)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-5)^(n-i+1)-1)/((-5)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012

A015386 Gaussian binomial coefficient [ n,10 ] for q=-2.

Original entry on oeis.org

1, 683, 932295, 848699215, 926949282623, 920460637644639, 957498220445101855, 972884994173649887135, 1000137219716325891620511, 1022146087305755916943130783, 1047699739488399814866709052575, 1072321450350081081965428740719775
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401, A015402.

Programs

  • Magma
    r:=10; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -2],{n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-2) for n in range(10,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-2)^(n-i+1)-1)/((-2)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: x^10 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(1024*x-1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 22 2016

A015392 Gaussian binomial coefficient [ n,10 ] for q=-6.

Original entry on oeis.org

1, 51828151, 3223388672928931, 194007802557550502202331, 11739968552378570066280405695371, 709779726467093092873777345973423761771, 42918585756017923252384776090351752769462732331
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015393, A015394, A015397, A015398, A015399, A015401, A015402.

Programs

  • Magma
    r:=10; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -6], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-6) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-6)^(n-i+1)-1)/((-6)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012

A015393 Gaussian binomial coefficient [ n,10 ] for q=-7.

Original entry on oeis.org

1, 247165843, 71272779562356450, 20074270583791406305395150, 5672847283550509352791825564114953, 1602343611088456383646516751967506297398179, 452626257785468649545785666454333613632908777305800
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015394, A015397, A015398, A015399, A015401, A015402. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=10; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 10, -7], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,10,-7) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-7)^(n-i+1)-1)/((-7)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
Showing 1-10 of 22 results. Next