cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A015370 Gaussian binomial coefficient [ n,8 ] for q=-13.

Original entry on oeis.org

1, 757464241, 621564749363392901, 506798783502833908602716981, 413425812255544017749839936272484623, 337243227617163445881817693983677965955870943, 275099718210633054941121644140453635236773122223471523
Offset: 8

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,8] for q=-2..-12: A015356, A015357, A015359, A015360, A015361, A015363, A015364, A015365, A015367, A015368, A015369. - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Magma
    r:=8; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..18]]; // Vincenzo Librandi, Nov 03 2012
    
  • Mathematica
    Table[QBinomial[n, 8, -13], {n, 8, 14}] (* Vincenzo Librandi, Nov 03 2012 *)
  • PARI
    A015370(n,r=8,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,8,-13) for n in range(8,14)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..8} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015402 Gaussian binomial coefficient [ n,10 ] for q=-13.

Original entry on oeis.org

1, 128011456717, 17752510805031727164870, 2446220929187500105890055171302510, 337244135881870906696294510219932684378716373, 46491842741544248966048667175076748587505712393943779761
Offset: 10

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 10] for q = -2..-13: A015386, A015388, A015390, A015391, A015392, A015393, A015394, A015397, A015398, A015399, A015401. - Vincenzo Librandi, Nov 05 2012

Programs

  • Magma
    r:=10; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 05 2012
  • Mathematica
    Table[QBinomial[n, 10, -13], {n, 10, 20}] (* Vincenzo Librandi, Nov 05 2012 *)
  • PARI
    A015402(n,r=10,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    
  • Sage
    [gaussian_binomial(n,10,-13) for n in range(10,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..10} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015375 Gaussian binomial coefficient [ n,9 ] for q=-3.

Original entry on oeis.org

1, -14762, 326882347, -6204226946060, 123644349019377043, -2423717068608654822146, 47771556642163840723529281, -939857780045414554730512966640, 18502040831058043147238631145734166, -364157167636884405223950738210339855212
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), A015340 (k = 7), A015357 (k = 8), this sequence (k = 9), A015388 (k = 10).

Programs

  • Magma
    r:=9; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -3],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-3) for n in range(9,18)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(19683*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(10*n)/A015518(n) * (-x)^n/n) = 1 - 14762*x + 326882347*x^2 + .... - Peter Bala, Jun 29 2025

A015129 Triangle of (Gaussian) q-binomial coefficients for q = -13.

Original entry on oeis.org

1, 1, 1, 1, -12, 1, 1, 157, 157, 1, 1, -2040, 26690, -2040, 1, 1, 26521, 4508570, 4508570, 26521, 1, 1, -344772, 761974851, -9900819720, 761974851, -344772, 1, 1, 4482037, 128773405047, 21752862899691, 21752862899691, 128773405047, 4482037, 1
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T(n,k) = T(n,n-k); k=0,...,n; n=0,1,...) or square array (A(n,r) = A(r,n) = T(n+r,r), read by antidiagonals). The diagonals of the former, resp. rows (or columns) of the latter, are: A000012 (all 1's), A015000 (q-integers for q=-13), A015265 (k=2), A015286 (k=3), A015303 (k=4), A015321 (k=5), A015337 (k=6), A015355 (k=7), A015370 (k=8), A015385 (k=9), A015402 (k=10), A015422 (k=11), A015438 (k=12). - M. F. Hasler, Nov 04 2012

Examples

			The square array looks as follows:
1    1          1              1                      1               1       ...
1   -12        157           -2040                  26521          -344772    ...
1   157       26690         4508570               761974851      128773405047 ...
1  -2040     4508570      -9900819720           21752862899691        ...
1  26521    761974851    21752862899691       621305270140974342      ...
1 -344772 128773405047 -47790911017216080  17745052029585350965782    ...
(...)
		

Crossrefs

Cf. analog triangles for other negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015132 (q=-14), A015133 (q=-15). - M. F. Hasler, Nov 04 2012
Cf. analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168 (q=4), A022169 (q=5), A022170 (q=6), A022171 (q=7), A022172 (q=8), A022173 (q=9), A022174 (q=10), A022175 (q=11), A022176 (q=12), A022177 (q=13), A022178 (q=14), A022179 (q=15), A022180 (q=16), A022181 (q=17), A022182 (q=18), A022183 (q=19), A022184 (q=20), A022185 (q=21), A022186 (q=22), A022187 (q=23), A022188 (q=24). - M. F. Hasler, Nov 05 2012

Programs

  • Magma
    qBinomial:= func< n,k,q | k eq 0 select 1 else (&*[(1 -q^(n-j+1))/(1 -q^j): j in [1..k]]) >;
    [qBinomial(n,k,-13): k in [0..n], n in [0..10]]; // A015129 // G. C. Greubel, Dec 01 2021
    
  • Mathematica
    Flatten[Table[QBinomial[x,y,-13],{x,0,10},{y,0,x}]] (* Harvey P. Dale, Jul 12 2014 *)
  • PARI
    A015129(n, r, q=-13)=prod(i=1, r, (q^(1+n-i+r)-1)/(q^i-1)) \\ (Indexing is that of the square array: n,r=0,1,2,...) - M. F. Hasler, Nov 03 2012
    
  • Sage
    flatten([[q_binomial(n,k,-13) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Dec 01 2021

Formula

As a triangle, T(n, k) = Product_{i=1..k} ((-13)^(1+n-i)-1)/((-13)^i-1), with 0 <= k <= n = 0,1,2,...

A015321 Gaussian binomial coefficient [ n,5 ] for q = -13.

Original entry on oeis.org

1, -344772, 128773405047, -47790911017216080, 17745052029585350965782, -6588595858168804130787130344, 2446300028783605805772822454177234, -908294062111964496034866469968025332240
Offset: 5

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012

Programs

  • Mathematica
    Table[QBinomial[n, 5, -13], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • PARI
    A015321(n,r=5,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
  • Sage
    [gaussian_binomial(n,5,-13) for n in range(5,13)] # Zerinvary Lajos, May 27 2009
    

Formula

a(n) = Product_{i=1..5} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015371 Gaussian binomial coefficient [ n,9 ] for q=-2.

Original entry on oeis.org

1, -341, 232903, -105970865, 57881286463, -28735427761313, 14946527496991519, -7593183562134412385, 3902985682508407194271, -1994425683761796076272481, 1022146087305755916943130783, -523082886040328458081329117025
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=9 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -2],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-2) for n in range(9,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-2)^(n-i+1)-1)/((-2)^i-1). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016

A015376 Gaussian binomial coefficient [ n,9 ] for q=-4.

Original entry on oeis.org

1, -209715, 58640578205, -15135778281070755, 3983313338565919030365, -1043182954580986851130914723, 273530932713230996784935699290205, -71700116580663579186545558567554787235, 18796042166858164201094703719132482337953885
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015375, A015377,A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -4],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-4) for n in range(9,17)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(65536*x-1)*(64*x+1)*(262144*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Sep 02 2016

A015377 Gaussian binomial coefficient [ n,9 ] for q=-5.

Original entry on oeis.org

1, -1627604, 3311368882921, -6416187820400919704, 12551699566292514833249671, -24507195908707737696414306347204, 47868680606322065338648160779243199671, -93492320106912696270274007078334075223284704
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015375, A015376, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -5], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-5) for n in range(9,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-5)^(n-i+1)-1)/((-5)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012

A015378 Gaussian binomial coefficient [ n,9 ] for q=-6.

Original entry on oeis.org

1, -8638025, 89538572808355, -898184256176675135525, 9058617560471271225871839115, -91278255494743382265330154281509525, 919894226814090294609303909820267635374635, -9270381253910297854571803793049953719997957501525
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q = -2..-13: A015371, A015375, A015376, A015377, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    QBinomial[Range[9,20],9,-6] (* Harvey P. Dale, Aug 16 2012 *)
    Table[QBinomial[n, 9, -6],{n, 9, 18}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-6) for n in range(9,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-6)^(n-i+1)-1)/((-6)^i-1). - Vincenzo Librandi, Nov 04 2012

A015379 Gaussian binomial coefficient [ n,9 ] for q=-7.

Original entry on oeis.org

1, -35309406, 1454546516636543, -58525570007342935110900, 2362701900656492615160524472603, -95337871447349860183019420430515900118, 3847259697771549596318959641032366290112134229
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -7],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-7) for n in range(9,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-7)^(n-i+1)-1)/((-7)^i-1). - Vincenzo Librandi, Nov 04 2012
Showing 1-10 of 22 results. Next