cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A015385 Gaussian binomial coefficient [ n,9 ] for q=-13.

Original entry on oeis.org

1, -9847035132, 105044442632566365137, -1113436927250681654567602842120, 11807854622717155763702496765310830475383, -125216049699851612689080581288579246248342359563916
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -13],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • PARI
    A015385(n,r=9,q=-13)=prod(i=1,r,(q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
    

Formula

a(n) = Product_{i=1..9} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012

A015375 Gaussian binomial coefficient [ n,9 ] for q=-3.

Original entry on oeis.org

1, -14762, 326882347, -6204226946060, 123644349019377043, -2423717068608654822146, 47771556642163840723529281, -939857780045414554730512966640, 18502040831058043147238631145734166, -364157167636884405223950738210339855212
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Gaussian binomial coefficient [n, k]_q for q = -3: A015251 (k = 2), A015268 (k = 3), A015288 (k = 4), A015306 (k = 5), A015324 (k = 6), A015340 (k = 7), A015357 (k = 8), this sequence (k = 9), A015388 (k = 10).

Programs

  • Magma
    r:=9; q:=-3; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -3],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-3) for n in range(9,18)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-3)^(n-i+1)-1)/((-3)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(2187*x+1)*(3*x+1)*(19683*x+1)*(6561*x-1)*(243*x+1) ). - R. J. Mathar, Sep 02 2016
G.f. with offset 0: exp(Sum_{n >= 1} A015518(10*n)/A015518(n) * (-x)^n/n) = 1 - 14762*x + 326882347*x^2 + .... - Peter Bala, Jun 29 2025

A015117 Triangle of q-binomial coefficients for q=-7.

Original entry on oeis.org

1, 1, 1, 1, -6, 1, 1, 43, 43, 1, 1, -300, 2150, -300, 1, 1, 2101, 105050, 105050, 2101, 1, 1, -14706, 5149551, -35927100, 5149551, -14706, 1, 1, 102943, 252313293, 12328144851, 12328144851, 252313293, 102943, 1, 1, -720600, 12363454300
Offset: 0

Views

Author

Keywords

Comments

May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A014989 (k=1), A015258 (k=2), A015275, A015293, A015312, A015330, A015346, A015363, A015379, A015393 (k=10), A015411, A015430,... - M. F. Hasler, Nov 04 2012

Crossrefs

Cf. analog triangles for negative q=-2,...,-15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15);
analog triangles for positive q=2,...,24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012

Programs

  • Mathematica
    Flatten[Table[QBinomial[n,m,-7],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Aug 08 2012 *)
  • PARI
    T015117(n, k, q=-7)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0,1,2,...) - M. F. Hasler, Nov 04 2012

A015371 Gaussian binomial coefficient [ n,9 ] for q=-2.

Original entry on oeis.org

1, -341, 232903, -105970865, 57881286463, -28735427761313, 14946527496991519, -7593183562134412385, 3902985682508407194271, -1994425683761796076272481, 1022146087305755916943130783, -523082886040328458081329117025
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=9 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -2],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-2) for n in range(9,21)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-2)^(n-i+1)-1)/((-2)^i-1). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(512*x+1)*(64*x-1)*(128*x+1)*(2*x+1)*(8*x+1)*(32*x+1)*(16*x-1)*(4*x-1)*(256*x-1) ). - R. J. Mathar, Sep 02 2016

A015376 Gaussian binomial coefficient [ n,9 ] for q=-4.

Original entry on oeis.org

1, -209715, 58640578205, -15135778281070755, 3983313338565919030365, -1043182954580986851130914723, 273530932713230996784935699290205, -71700116580663579186545558567554787235, 18796042166858164201094703719132482337953885
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015375, A015377,A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-4; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -4],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-4) for n in range(9,17)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-4)^(n-i+1)-1)/((-4)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
G.f.: -x^9 / ( (x-1)*(16384*x+1)*(4096*x-1)*(256*x-1)*(65536*x-1)*(64*x+1)*(262144*x+1)*(4*x+1)*(16*x-1)*(1024*x+1) ). - R. J. Mathar, Sep 02 2016

A015377 Gaussian binomial coefficient [ n,9 ] for q=-5.

Original entry on oeis.org

1, -1627604, 3311368882921, -6416187820400919704, 12551699566292514833249671, -24507195908707737696414306347204, 47868680606322065338648160779243199671, -93492320106912696270274007078334075223284704
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015375, A015376, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -5], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-5) for n in range(9,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-5)^(n-i+1)-1)/((-5)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012

A015378 Gaussian binomial coefficient [ n,9 ] for q=-6.

Original entry on oeis.org

1, -8638025, 89538572808355, -898184256176675135525, 9058617560471271225871839115, -91278255494743382265330154281509525, 919894226814090294609303909820267635374635, -9270381253910297854571803793049953719997957501525
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n,9] for q = -2..-13: A015371, A015375, A015376, A015377, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    QBinomial[Range[9,20],9,-6] (* Harvey P. Dale, Aug 16 2012 *)
    Table[QBinomial[n, 9, -6],{n, 9, 18}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-6) for n in range(9,16)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-6)^(n-i+1)-1)/((-6)^i-1). - Vincenzo Librandi, Nov 04 2012

A015380 Gaussian binomial coefficient [ n,9 ] for q=-8.

Original entry on oeis.org

1, -119304647, 16266970069380217, -2179059787976052939572615, 292539874786707389459461268654713, -39262839136506665155883080645146897495431, 5269789166381879647128952074697436662720144919161
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -8],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-8) for n in range(9,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-8)^(n-i+1)-1)/((-8)^i-1). - Vincenzo Librandi, Nov 04 2012

A015381 Gaussian binomial coefficient [ n,9 ] for q=-9.

Original entry on oeis.org

1, -348678440, 136773736379522605, -52916360230556551635386480, 20504007291105533368839949866598015, -7943538006665671364765186721016327317109448, 3077495169782617972230910362141435994555138110002155
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -9],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
  • Sage
    [gaussian_binomial(n,9,-9) for n in range(9,15)] # Zerinvary Lajos, May 25 2009
    

Formula

a(n) = Product_{i=1..9} ((-9)^(n-i+1)-1)/((-9)^i-1). - Vincenzo Librandi, Nov 04 2012

A015382 Gaussian binomial coefficient [ n,9 ] for q=-10.

Original entry on oeis.org

1, -909090909, 918273645463728191, -917356289173636281073462809, 917448033977125729275307703398447191, -917438859588520669588272049420660231320652809, 917439777028298615325746963688293507886210115870347191
Offset: 9

Views

Author

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012

Programs

  • Magma
    r:=9; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
  • Mathematica
    Table[QBinomial[n, 9, -10],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)

Formula

a(n) = Product_{i=1..9} ((-10)^(n-i+1)-1)/((-10)^i-1). - Vincenzo Librandi, Nov 04 2012
Showing 1-10 of 12 results. Next