cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015323 Gaussian binomial coefficient [ n,6 ] for q = -2.

Original entry on oeis.org

1, 43, 3655, 208335, 14208447, 882215391, 57344000415, 3642010817055, 233988483199263, 14946527496991519, 957498220445101855, 61250446192484546335, 3920970870875818419999, 250911985465716094666527
Offset: 6

Views

Author

Olivier Gérard, Dec 11 1999

Keywords

References

  • J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
  • M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

Crossrefs

Diagonal k=6 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012

Programs

  • Mathematica
    Table[QBinomial[n, 6, -2], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
  • Sage
    [gaussian_binomial(n,6,-2) for n in range(6,20)] # Zerinvary Lajos, May 27 2009

Formula

A015323(n) = T[n,6] where T is the triangular array A015109. - M. F. Hasler, Nov 04 2012
G.f.: x^6 / ( (x-1)*(8*x+1)*(64*x-1)*(2*x+1)*(32*x+1)*(4*x-1)*(16*x-1) ). - R. J. Mathar, Aug 04 2016