A015350 Gaussian binomial coefficient [ n,7 ] for q = -10.
1, -9090909, 91827363728191, -917356280909173462809, 9174480257209191175298447191, -91743885133148835462057759420652809, 917439768771348869854580597622587770347191
Offset: 7
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 7..100
Programs
-
Magma
r:=7; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..15]]; // Vincenzo Librandi, Nov 06 2016
-
Mathematica
Table[QBinomial[n,7,-10],{n,7,20}] (* Harvey P. Dale, Mar 22 2012 *)
-
Sage
[gaussian_binomial(n,7,-10) for n in range(7,14)] # Zerinvary Lajos, May 27 2009