A015378 Gaussian binomial coefficient [ n,9 ] for q=-6.
1, -8638025, 89538572808355, -898184256176675135525, 9058617560471271225871839115, -91278255494743382265330154281509525, 919894226814090294609303909820267635374635, -9270381253910297854571803793049953719997957501525
Offset: 9
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 9..150
Crossrefs
Programs
-
Magma
r:=9; q:=-6; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Mathematica
QBinomial[Range[9,20],9,-6] (* Harvey P. Dale, Aug 16 2012 *) Table[QBinomial[n, 9, -6],{n, 9, 18}] (* Vincenzo Librandi, Nov 04 2012 *)
-
Sage
[gaussian_binomial(n,9,-6) for n in range(9,16)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..9} ((-6)^(n-i+1)-1)/((-6)^i-1). - Vincenzo Librandi, Nov 04 2012