A015379 Gaussian binomial coefficient [ n,9 ] for q=-7.
1, -35309406, 1454546516636543, -58525570007342935110900, 2362701900656492615160524472603, -95337871447349860183019420430515900118, 3847259697771549596318959641032366290112134229
Offset: 9
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 9..140
Crossrefs
Programs
-
Magma
r:=9; q:=-7; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
-
Mathematica
Table[QBinomial[n, 9, -7],{n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
Sage
[gaussian_binomial(n,9,-7) for n in range(9,15)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..9} ((-7)^(n-i+1)-1)/((-7)^i-1). - Vincenzo Librandi, Nov 04 2012