A015394 Gaussian binomial coefficient [ n,10 ] for q=-8.
1, 954437177, 1041086085394771065, 1115678612484825190455949945, 1198243328242032079710778546865654393, 1286564714023293732070008866290952083995937401, 1381443612518576172240265744739493702803061753684478585
Offset: 10
References
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 10..120
Crossrefs
Programs
-
Magma
r:=10; q:=-8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 04 2012
-
Mathematica
Table[QBinomial[n, 10, -8], {n, 10, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
-
Sage
[gaussian_binomial(n,10,-8) for n in range(10,16)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..10} ((-8)^(n-i+1)-1)/((-8)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012