cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055830 Triangle T read by rows: diagonal differences of triangle A037027.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Or, coefficients of a generalized Lucas-Pell polynomial read by rows. - Philippe Deléham, Nov 05 2006
Equals A046854(shifted) * Pascal's triangle; where A046854 is shifted down one row and "1" inserted at (0,0). - Gary W. Adamson, Dec 24 2008

Examples

			Triangle begins:
   1
   1,   0
   2,   1,   0
   3,   3,   1,   0
   5,   7,   4,   1,   0
   8,  15,  12,   5,   1,   0
  13,  30,  31,  18,   6,   1,  0
  21,  58,  73,  54,  25,   7,  1, 0
  34, 109, 162, 145,  85,  33,  8, 1, 0
  55, 201, 344, 361, 255, 125, 42, 9, 1, 0
  ...
		

Crossrefs

Left-hand columns include A000045, A023610.
Row sums: A001333 (numerators of continued fraction convergents to sqrt(2)).
Cf. A122075 (another version).
Cf. A046854. - Gary W. Adamson, Dec 24 2008

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return Fibonacci(n+1);
      elif n eq 1 and k eq 1 then return 0;
      else return T(n-1,k-1) + T(n-1,k) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then fibonacci(n+1)
        elif n=1 and k=1 then 0
        else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) )));
    for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return fibonacci(n+1)
        elif (n==1 and k==1): return 0
        else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020

Formula

G.f.: (1-y*z) / (1-y*(1+y+z)).
T(i, j) = R(i-j, j), where R(0, 0)=1, R(0, j)=0 for j >= 1, R(1, j)=1 for j >= 0, R(i, j) = Sum_{k=0..j} (R(i-2, k) + R(i-1, k)) for i >= 1, j >= 1.
Sum_{k=0..n} x^k*T(n,k) = A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x= -2,-1,0,1,2,3,4,5,6,7,8,9,10. - Philippe Deléham, Oct 22 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A011782(n). - Philippe Deléham, Oct 22 2006
Triangle T(n,k), 0 <= k <= n, given by [1, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
T(n,0) = Fibonacci(n+1) = A000045(n+1). Sum_{k=0..n} T(n,k) = A001333(n). T(n,k)=0 if k > n or if k < 0, T(0,0)=1, T(1,1)=0, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Philippe Deléham, Nov 05 2006

Extensions

Edited by Ralf Stephan, Jan 12 2005

A135597 Square array read by antidiagonals: row m (m >= 1) satisfies b(0) = b(1) = 1; b(n) = m*b(n-1) + b(n-2).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 5, 1, 1, 5, 13, 17, 8, 1, 1, 6, 21, 43, 41, 13, 1, 1, 7, 31, 89, 142, 99, 21, 1, 1, 8, 43, 161, 377, 469, 239, 34, 1, 1, 9, 57, 265, 836, 1597, 1549, 577, 55, 1, 1, 10, 73, 407, 1633, 4341, 6765, 5116, 1393, 89, 1, 1, 11, 91, 593, 2906
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2008

Keywords

Comments

For n > 1, the number of independent vertex sets in the graph K_m X P_{n-1}. For example, in K_3 X P_1 there are 4 independent vertex sets. - Andrew Howroyd, May 23 2017

Examples

			Array begins:
========================================================
m\n| 0 1 2  3   4    5     6      7       8        9
---|----------------------------------------------------
1  | 1 1 2  3   5    8    13     21      34       55 ...
2  | 1 1 3  7  17   41    99    239     577     1393 ...
3  | 1 1 4 13  43  142   469   1549    5116    16897 ...
4  | 1 1 5 21  89  377  1597   6765   28657   121393 ...
5  | 1 1 6 31 161  836  4341  22541  117046   607771 ...
6  | 1 1 7 43 265 1633 10063  62011  382129  2354785 ...
7  | 1 1 8 57 407 2906 20749 148149 1057792  7552693 ...
8  | 1 1 9 73 593 4817 39129 317849 2581921 20973217 ...
...
		

Crossrefs

Programs

  • Maple
    A135597 := proc(m,c) coeftayl( (m*x-x-1)/(x^2+m*x-1),x=0,c) ; end: for d from 1 to 15 do for c from 0 to d-1 do printf("%d,",A135597(d-c,c)) ; od: od: # R. J. Mathar, Apr 21 2008
  • Mathematica
    a[, 0] = a[, 1] = 1; a[m_, n_] := m*a[m, n-1] + a[m, n-2]; Table[a[m-n+1, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)

Formula

O.g.f. row m: (mx-x-1)/(x^2+mx-1). - R. J. Mathar, Apr 21 2008

Extensions

More terms from R. J. Mathar, Apr 21 2008

A213896 Fixed points of a sequence h(n) defined by the minimum number of 7's in the relation n*[n,7,7,...,7,n] = [x,...,x] between simple continued fractions.

Original entry on oeis.org

2, 3, 19, 31, 67, 79, 103, 127, 139, 151, 167, 179, 191, 263, 283, 359, 383, 443, 463, 479, 491, 503, 571, 631, 691, 787, 827, 883, 919, 1019, 1087, 1171, 1291, 1303, 1307, 1327, 1399, 1423, 1451, 1487
Offset: 1

Views

Author

Art DuPre, Jun 23 2012

Keywords

Comments

In a variant of A213891, multiply n by a number with simple continued fraction [n,7,7,..,7,n] and increase the number of 7's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are
2 * [2, 7, 7, 2] = [4, 3, 1, 1, 3, 4],
3 * [3, 7, 7, 7, 3] = [9, 2, 2, 1, 1, 1, 2, 2, 9] ,
4 * [4, 7, 7, 7, 7, 7, 4] = [16, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 16],
5 * [5, 7, 7, 5] = [25, 1, 2, 2, 1, 25] ,
6 * [6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6] = [36, 1, 5, 3, 1, 4, 10, 1, 2, 2, 4, 2, 2, 1, 10, 4, 1, 3, 5, 1, 36],
7 * [7, 7, 7] = [49, 1, 49] .
The number of 7's needed defines the sequence h(n) = 2, 3, 5, 2, 11, 1, 5, 11, 2,... (n>=2).
The current sequence contains the fixed points of h, i. e., those n where h(n)=n.
We conjecture that this sequence contains prime numbers analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the Fibonacci sequences (sequences satisfying f(n)=f(n-1)+f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the sequences satisfying f(n)=7*f(n-1)+f(n-2), A054413, A015453, etc. This would mean that a prime is in the sequence A213896 if and only if it divides some term in each of the sequences satisfying f(n)=7*f(n-1)+f(n-2).
The above sequence h() is recorded as A262217. - M. F. Hasler, Sep 15 2015

Crossrefs

Programs

  • PARI
    {a(n) = local(t, m=1); if( n<2, 0, while( 1,
       t = contfracpnqn( concat([n, vector(m,i,7), n]));
       t = contfrac(n*t[1,1]/t[2,1]);
       if(t[1]
    				

A153764 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,0,0,...] DELTA [0,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 3, 4, 1, 1, 0, 1, 3, 6, 4, 5, 1, 1, 0, 1, 4, 6, 10, 5, 6, 1, 1, 0, 1, 4, 10, 10, 15, 6, 7, 1, 1, 0, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 0, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 0, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 01 2009

Keywords

Comments

A130595*A153342 as infinite lower triangular matrices. Reflected version of A103631. Another version of A046854. Row sums are Fibonacci numbers (A000045).
A055830*A130595 as infinite lower triangular matrices.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1, 0;
  1, 1, 1, 0;
  1, 2, 1, 1, 0;
  1, 2, 3, 1, 1, 0;
  1, 3, 3, 4, 1, 1, 0;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Binomial(Floor((n+k-1)/2),k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 28 2016
  • Mathematica
    Table[Binomial[Floor[(n + k - 1)/2], k], {n, 0, 45}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 27 2016 *)

Formula

T(n,k) = binomial(floor((n+k-1)/2),k).
Sum_{k=0..n} T(n,k)*x^k = A122335(n-1), A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Dec 17 2011
Sum_{k=0..n} T(n,k)*x^(n-k) = A152163(n), A000007(n), A000045(n+1), A026597(n), A122994(n+1), A158608(n), A122995(n+1), A158797(n), A122996(n+1), A158798(n), A158609(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 17 2011
G.f.: (1+(1-y)*x)/(1-y*x-x^2). - Philippe Deléham, Dec 17 2011
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013
Showing 1-4 of 4 results.