cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055830 Triangle T read by rows: diagonal differences of triangle A037027.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 3, 3, 1, 0, 5, 7, 4, 1, 0, 8, 15, 12, 5, 1, 0, 13, 30, 31, 18, 6, 1, 0, 21, 58, 73, 54, 25, 7, 1, 0, 34, 109, 162, 145, 85, 33, 8, 1, 0, 55, 201, 344, 361, 255, 125, 42, 9, 1, 0, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 0, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1, 0
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Or, coefficients of a generalized Lucas-Pell polynomial read by rows. - Philippe Deléham, Nov 05 2006
Equals A046854(shifted) * Pascal's triangle; where A046854 is shifted down one row and "1" inserted at (0,0). - Gary W. Adamson, Dec 24 2008

Examples

			Triangle begins:
   1
   1,   0
   2,   1,   0
   3,   3,   1,   0
   5,   7,   4,   1,   0
   8,  15,  12,   5,   1,   0
  13,  30,  31,  18,   6,   1,  0
  21,  58,  73,  54,  25,   7,  1, 0
  34, 109, 162, 145,  85,  33,  8, 1, 0
  55, 201, 344, 361, 255, 125, 42, 9, 1, 0
  ...
		

Crossrefs

Left-hand columns include A000045, A023610.
Row sums: A001333 (numerators of continued fraction convergents to sqrt(2)).
Cf. A122075 (another version).
Cf. A046854. - Gary W. Adamson, Dec 24 2008

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq 0 then return Fibonacci(n+1);
      elif n eq 1 and k eq 1 then return 0;
      else return T(n-1,k-1) + T(n-1,k) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 21 2020
    
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then fibonacci(n+1)
        elif n=1 and k=1 then 0
        else T(n-1, k-1) + T(n-1, k) + T(n-2, k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Jan 21 2020
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    T(n,k) = if(k<0 || k>n, 0, if(k==0, fibonacci(n+1), if(n==1 && k==1, 0, T(n-1, k-1) + T(n-1, k) + T(n-2, k) )));
    for(n=0,12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jan 21 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return fibonacci(n+1)
        elif (n==1 and k==1): return 0
        else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 21 2020

Formula

G.f.: (1-y*z) / (1-y*(1+y+z)).
T(i, j) = R(i-j, j), where R(0, 0)=1, R(0, j)=0 for j >= 1, R(1, j)=1 for j >= 0, R(i, j) = Sum_{k=0..j} (R(i-2, k) + R(i-1, k)) for i >= 1, j >= 1.
Sum_{k=0..n} x^k*T(n,k) = A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x= -2,-1,0,1,2,3,4,5,6,7,8,9,10. - Philippe Deléham, Oct 22 2006
Sum_{k=0..floor(n/2)} T(n-k,k) = A011782(n). - Philippe Deléham, Oct 22 2006
Triangle T(n,k), 0 <= k <= n, given by [1, 1, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
T(n,0) = Fibonacci(n+1) = A000045(n+1). Sum_{k=0..n} T(n,k) = A001333(n). T(n,k)=0 if k > n or if k < 0, T(0,0)=1, T(1,1)=0, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k). - Philippe Deléham, Nov 05 2006

Extensions

Edited by Ralf Stephan, Jan 12 2005

A213899 Fixed points of a sequence h(n) defined by the minimum number of 10's in the relation n*[n,10,10,...,10,n] = [x,...,x] between simple continued fractions.

Original entry on oeis.org

3, 7, 31, 43, 47, 71, 107, 151, 167, 179, 211, 223, 239, 251, 271, 283, 419, 431, 463, 467, 487, 491, 523, 547, 563, 571, 631, 839, 859, 883, 907, 967, 971, 1087, 1103, 1171, 1187, 1279, 1283, 1291, 1367, 1399, 1423, 1459, 1471, 1483, 1487, 1499
Offset: 1

Views

Author

Art DuPre, Jun 24 2012

Keywords

Comments

In a variant of A213891, multiply n by a number with simple continued fraction [n,10,10,...,10,n] and increase the number of 10's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are
2 * [2, 10, 2] = [4, 5, 4],
3 * [3, 10, 10, 10, 3] = [9, 3, 2, 1, 2, 1, 2, 3, 9],
4 * [4, 10, 10, 10, 4] = [16, 2, 1, 1, 9, 1, 1, 2, 16],
5 * [5, 10, 5] = [25, 2, 25],
6 * [6, 10, 10, 10, 6] = [36, 1, 1, 2, 6, 2, 1, 1, 36],
7 * [7, 10, 10, 10, 10, 10, 10, 10, 7] = [49, 1, 2, 3, 1, 6, 2, 1, 2, 2, 2, 1, 2, 6, 1, 3, 2, 1, 49].
The number of 10's needed defines the sequence h(n) = 1, 3, 3, 1, 3, 7, 7, 11, 1, ... (n>=2).
The current sequence contains the fixed points of h, i.e., those n where h(n)=n.
We conjecture that this sequence contains prime numbers analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the Fibonacci sequences (sequences satisfying f(n) = f(n-1) + f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the sequences satisfying f(n) = 10*f(n-1) + f(n-2), A041041, A015456, etc. This would mean that a prime is in the sequence A213899 if and only if it divides some term in each of the sequences satisfying f(n) = 10*f(n-1) + f(n-2).
The sequence h() is given in A262220. - M. F. Hasler, Sep 15 2015

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[10, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)
  • PARI
    {a(n) = local(t, m=1); if( n<2, 0, while( 1,
       t = contfracpnqn( concat([n, vector(m,i,10), n]));
       t = contfrac(n*t[1,1]/t[2,1]);
       if(t[1]
    				

A153764 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,-1,0,0,0,0,0,0,0,0,...] DELTA [0,1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 3, 4, 1, 1, 0, 1, 3, 6, 4, 5, 1, 1, 0, 1, 4, 6, 10, 5, 6, 1, 1, 0, 1, 4, 10, 10, 15, 6, 7, 1, 1, 0, 1, 5, 10, 20, 15, 21, 7, 8, 1, 1, 0, 1, 5, 15, 20, 35, 21, 28, 8, 9, 1, 1, 0, 1, 6, 15, 35, 35, 56, 28, 36, 9, 10, 1, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Jan 01 2009

Keywords

Comments

A130595*A153342 as infinite lower triangular matrices. Reflected version of A103631. Another version of A046854. Row sums are Fibonacci numbers (A000045).
A055830*A130595 as infinite lower triangular matrices.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1, 0;
  1, 1, 1, 0;
  1, 2, 1, 1, 0;
  1, 2, 3, 1, 1, 0;
  1, 3, 3, 4, 1, 1, 0;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Binomial(Floor((n+k-1)/2),k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 28 2016
  • Mathematica
    Table[Binomial[Floor[(n + k - 1)/2], k], {n, 0, 45}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 27 2016 *)

Formula

T(n,k) = binomial(floor((n+k-1)/2),k).
Sum_{k=0..n} T(n,k)*x^k = A122335(n-1), A039834(n-2), A000012(n), A000045(n+1), A001333(n), A003688(n), A015448(n), A015449(n), A015451(n), A015453(n), A015454(n), A015455(n), A015456(n), A015457(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Dec 17 2011
Sum_{k=0..n} T(n,k)*x^(n-k) = A152163(n), A000007(n), A000045(n+1), A026597(n), A122994(n+1), A158608(n), A122995(n+1), A158797(n), A122996(n+1), A158798(n), A158609(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 17 2011
G.f.: (1+(1-y)*x)/(1-y*x-x^2). - Philippe Deléham, Dec 17 2011
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 09 2013

A171510 a(n) = 10*a(n-1) + a(n-2), with a(1)=2 and a(2)=1.

Original entry on oeis.org

2, 1, 12, 121, 1222, 12341, 124632, 1258661, 12711242, 128371081, 1296422052, 13092591601, 132222338062, 1335315972221, 13485382060272, 136189136574941, 1375376747809682, 13889956614671761, 140274942894527292, 1416639385559944681, 14306668798493974102
Offset: 1

Views

Author

Mark Dols, Dec 10 2009

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == 10 a[n - 1] + a[n - 2], a[1] == 2, a[2] == 1}, a, {n, 1, 21}] (* or *) LinearRecurrence[{10, 1}, {2, 1}, 21] (* Michael De Vlieger, Oct 02 2015 *)
  • PARI
    Vec(x*(19*x-2)/(x^2+10*x-1) + O(x^40)) \\ Colin Barker, Oct 02 2015

Formula

G.f.: x*(19*x-2) / (x^2+10*x-1). - Colin Barker, Oct 02 2015
Showing 1-4 of 4 results.