cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A287837 Number of words over the alphabet {0,1,...,10} such that no two consecutive terms have distance 7.

Original entry on oeis.org

1, 11, 113, 1163, 11969, 123179, 1267697, 13046507, 134268161, 1381821131, 14221015793, 146355621323, 1506219260609, 15501259470059, 159531252482417, 1641816303234347, 16896756789790721, 173893016807610251, 1789620438445474673, 18417883434877577483
Offset: 0

Views

Author

David Nacin, Jun 07 2017

Keywords

Comments

In general, the number of sequences on {0,1,...,10} such that no two consecutive terms have distance 6+k for k in {0,1,2,3,4} has generating function (-1 - x)/(-1 + 10*x + (2*k+1)*x^2).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, 3}, {1, 11, 113}, 20]
  • Python
    def a(n):
     if n in [0,1,2]:
      return [1, 11, 113][n]
     return 10*a(n-1) + 3*a(n-2)

Formula

For n>2, a(n) = 10*a(n-1) + 3*a(n-2), a(0)=1, a(1)=11, a(2)=113.
G.f.: (-1 - x)/(-1 + 10*x + 3*x^2).
a(n) = A015588(n)+A015588(n+1). - R. J. Mathar, Oct 20 2019
Showing 1-2 of 2 results.