cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015713 Numbers m such that phi(m) * sigma(m) + k^2 is not a square for any k.

Original entry on oeis.org

4, 9, 18, 49, 81, 98, 121, 162, 242, 361, 529, 722, 729, 961, 1058, 1458, 1849, 1922, 2209, 2401, 3481, 3698, 4418, 4489, 4802, 5041, 6241, 6561, 6889, 6962, 8978, 10082, 10609, 11449, 12482, 13122, 13778, 14641, 16129, 17161
Offset: 1

Views

Author

Keywords

Comments

Numbers m such that A062354(m) is in A016825. - Michel Marcus, Dec 07 2018

Crossrefs

Cf. A007814, A015710, A062354 (phi(n)*sigma(n)), A016825.

Programs

  • Mathematica
    nonSqDiffQ[n_] := Mod[n, 4] == 2; aQ[n_] := nonSqDiffQ[ EulerPhi[n] * DivisorSigma[ 1, n]]; Select[Range[20000], aQ] (* Amiram Eldar, Dec 07 2018 *)
  • PARI
    isok(n) = (sigma(n)*eulerphi(n) % 4) == 2; \\ Michel Marcus, Dec 07 2018

Formula

Conjecture: {4, p^(2*m), 2*p^(2*m), p = 4*k+3 is prime}. - Sean A. Irvine, Dec 06 2018
The conjecture is true. It can be proved using the multiplicative property of A062354(n), i.e., A062354(p^e) = p^(e-1)*(p^(e+1)-1), and that if m is a term then A007814(A062354(m)) = 1. - Amiram Eldar, Feb 11 2024