cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015818 Number of solutions of +- 1 +- 2 +- ... +- (n-1) +- n = 0 in which the partial sums +- 1 +- ... +- k (1<=k<=n) are all distinct.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 10, 14, 0, 0, 36, 40, 0, 0, 134, 258, 0, 0, 702, 1040, 0, 0, 4170, 5996, 0, 0, 23642, 36616, 0, 0, 140500, 217002, 0, 0, 852132, 1374692, 0, 0, 5411800, 8852230, 0, 0, 35764246, 56370054, 0, 0, 232969442, 376479130, 0, 0, 1555855594, 2534308444
Offset: 0

Views

Author

Keywords

Comments

If n==1 or 2 (mod 4) then a(n)=0.

Examples

			For n=4 there are 2 solutions: +1-2-3+4=0 and -1+2+3-4=0.
		

Crossrefs

a(n) <= A063865(n).

Programs

  • PARI
    issol(i, n) = {b = binary(i); while(length(b) < n, b = concat(0, b)); if (! sum(k=1, n, if (b[k], k, -k)), vsp = []; lastnb = 0; for (j=1, n, vsp = Set(concat(vsp, sum(k=1, j, if (b[k], k, -k)))); if (#vsp == lastnb, return (0)); lastnb = #vsp;); return (1););}
    a(n) = if ((!n) || ((n % 4) != 1) && ((n % 4) != 2), sum(i=0, 2^n-1, issol(i, n)));  \\ Michel Marcus, May 22 2014

Extensions

a(36)-a(46) from Ray Chandler, Nov 29 2008
a(47)-a(58) from Sean A. Irvine, Dec 13 2018