cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015919 Positive integers k such that 2^k == 2 (mod k).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 341, 347, 349, 353, 359, 367
Offset: 1

Views

Author

Keywords

Comments

Includes 341 which is first pseudoprime to base 2 and distinguishes sequence from A008578.
First composite even term is a(14868) = 161038 = A006935(2). - Max Alekseyev, Feb 11 2015
If k is a term, then so is 2^k - 1. - Max Alekseyev, Sep 22 2016
Terms of the form 2^k - 2 correspond to k in A296104. - Max Alekseyev, Dec 04 2017
If 2^k - 1 is a term, then so is k. - Thomas Ordowski, Apr 27 2018

Crossrefs

Contains A002997 as a subsequence.
The odd terms form A176997.

Programs

  • Mathematica
    Prepend[ Select[ Range@370, PowerMod[2, #, #] == 2 &], {1, 2}] // Flatten (* Robert G. Wilson v, May 16 2018 *)
  • PARI
    is(n)=Mod(2,n)^n==2 \\ Charles R Greathouse IV, Mar 11 2014
    
  • Python
    def ok(n): return pow(2, n, n) == 2%n
    print([k for k in range(1, 400) if ok(k)]) # Michael S. Branicky, Jun 03 2022

Formula

Equals {1} U A000040 U A001567 U A006935 = A001567 U A006935 U A008578. - Ray Chandler, Dec 07 2003; corrected by Max Alekseyev, Feb 11 2015