A015919 Positive integers k such that 2^k == 2 (mod k).
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 341, 347, 349, 353, 359, 367
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
Prepend[ Select[ Range@370, PowerMod[2, #, #] == 2 &], {1, 2}] // Flatten (* Robert G. Wilson v, May 16 2018 *)
-
PARI
is(n)=Mod(2,n)^n==2 \\ Charles R Greathouse IV, Mar 11 2014
-
Python
def ok(n): return pow(2, n, n) == 2%n print([k for k in range(1, 400) if ok(k)]) # Michael S. Branicky, Jun 03 2022
Formula
Equals {1} U A000040 U A001567 U A006935 = A001567 U A006935 U A008578. - Ray Chandler, Dec 07 2003; corrected by Max Alekseyev, Feb 11 2015
Comments