cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A015922 Numbers k such that 2^k == 8 (mod k).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, 111, 123, 129, 141, 159, 177, 183, 195, 201, 213, 219, 237, 248, 249, 267, 291, 303, 309, 315, 321, 327, 339, 381, 393, 399, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633
Offset: 1

Views

Author

Keywords

Comments

For all m, 2^A015921(m) - 1 belongs to this sequence.

Crossrefs

Contains A033553 as a subsequence.
The odd terms form A276967.

Programs

  • Mathematica
    a015922Q[n_Integer] := If[Mod[2^n, n] == Mod[8, n], True, False];
    a015922[n_Integer] :=
    Flatten[Position[Thread[a015922Q[Range[n]]], True]];
    a015922[1000000] (* Michael De Vlieger, Jul 16 2014 *)
    m = 8; Join[Select[Range[m], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
    Join[{1,2,3,4,8},Select[Range[650],PowerMod[2,#,#]==8&]] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    isok(n) = Mod(2, n)^n == Mod(8, n); \\ Michel Marcus, Oct 13 2013, Jul 16 2014

Extensions

First 5 terms inserted by David W. Wilson