A015931 Positive integers n such that 2^n (mod n) == 2^9 (mod n).
1, 2, 3, 4, 5, 8, 9, 16, 17, 21, 27, 32, 45, 63, 64, 99, 105, 117, 124, 128, 153, 171, 189, 207, 254, 256, 261, 273, 279, 333, 369, 387, 423, 429, 477, 512, 513, 531, 549, 585, 603, 639, 657, 711, 747, 801, 873, 909, 927, 945, 963, 981, 1017, 1143, 1179, 1197, 1209, 1233, 1251, 1341, 1359, 1365, 1413, 1467, 1472, 1503, 1504, 1557, 1611, 1629, 1665, 1719, 1737, 1773, 1785, 1791, 1899, 1971
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- OEIS Wiki, 2^n mod n
Programs
-
Mathematica
Select[Range[2000],PowerMod[2,9,#]==PowerMod[2,#,#]&] (* Harvey P. Dale, Apr 01 2017 *)
-
PARI
isok(n) = Mod(2, n)^n == 2^9; \\ Michel Marcus, Sep 23 2016
Extensions
Edited by Max Alekseyev, Jul 30 2011
Definition clarified by Harvey P. Dale, Apr 01 2017
Comments