cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016017 Smallest k such that 1/k can be written as a sum of exactly 2 unit fractions in n ways.

Original entry on oeis.org

1, 2, 4, 8, 6, 32, 64, 12, 256, 512, 24, 2048, 36, 30, 16384, 32768, 96, 72, 262144, 192, 1048576, 2097152, 60, 8388608, 216, 768, 67108864, 288, 1536, 536870912, 1073741824, 120, 576, 8589934592, 6144, 34359738368, 68719476736, 180, 864
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Aug 30 2021: (Start)
a(n) is the smallest number whose square has exactly 2n-1 divisors.
a(n) is the earliest occurrence of 2n-1 in A048691. (End)

Examples

			a(1)=1 and a(2)=2 because 1/2 = 1/3 + 1/6 = 1/4 + 1/4.
a(3)=4 because 1/4 = 1/5 + 1/20 = 1/6 + 1/12 = 1/8 + 1/8.
a(4)=8 because 1/8 = 1/9 + 1/72 = 1/10 + 1/40 = 1/12 + 1/24 = 1/16 + 1/16.
a(5)=6 because 1/6 = 1/7 + 1/42 = 1/8 + 1/24 = 1/9 + 1/18 = 1/10 + 1/15 = 1/12 + 1/12.
		

Crossrefs

Identical to A071571 shifted right.

Programs

  • Mathematica
    f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; t = Table[0, {50}]; Do[a = f[2, n]; If[a < 51 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 2^30}] (* Robert G. Wilson v, Aug 03 2005 *)
  • PARI
    a(n) = {k = 1; while (numdiv(k^2) != (2*n-1), k++); return (k); }; \\ Amiram Eldar, Jan 07 2019 after Michel Marcus at A071571

Formula

a(n+1) <= 2^n.
From Labos Elemer, May 22 2001: (Start)
a(n) = sqrt(A061283(n)).
a(n) = sqrt(Min{k| A000005(k)=2n-1}).
a((p+1)/2) = 2^((p-1)/2) = 2^A005097(i) if p is the i-th odd prime. [Corrected by Jianing Song, Aug 30 2021] (End)
a(n) is the least k such that (tau(k^2) + 1)/2 = n. - Vladeta Jovovic, Aug 01 2001

Extensions

Entry revised by N. J. A. Sloane, Aug 14 2005
Offset corrected by David W. Wilson, Dec 27 2018