A016013 Probably an erroneous version of A016017.
2, 1, 2, 4, 8, 6, 32, 64, 12, 256, 512, 24, 2048, 36, 30, 16384, 32768, 96, 72, 262144, 192, 1, 2
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a048691 = product . map (a005408 . fromIntegral) . a124010_row -- Reinhard Zumkeller, Jul 12 2012
A048691[n_]:=DivisorSigma[0,n^2] (* Enrique Pérez Herrero, May 30 2010 *) DivisorSigma[0,Range[80]^2] (* Harvey P. Dale, Apr 08 2015 *)
numlib::tau (n^2)$ n=1..90 // Zerinvary Lajos, May 13 2008
A048691(n)=prod(i=1,#n=factor(n)[,2],n[i]*2+1) /* or, of course, a(n)=numdiv(n^2) */ \\ M. F. Hasler, Dec 30 2007
for(n=1, 100, print1(direuler(p=2, n, (1 - X^2)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, Aug 21 2021
[sigma(n**2, 0) for n in range(1, 81)] # Stefano Spezia, Jul 14 2025
For n=15, a(15)=144 with 15 divisors: 1,2,3,4,6,8,9,12,16,18,24,36,48,72 and 144.
mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n-1] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
Table[(DivisorSigma[0,n^3]+2)/3,{n,90}] (* Harvey P. Dale, Apr 30 2018 *)
a(n)=(numdiv(n^3)+2)/3 \\ Charles R Greathouse IV, May 01 2013
a(n)=my(f=factor(n)[,2]);prod(i=1,#f,3*f[i]+1)\3+1 \\ Charles R Greathouse IV, May 01 2013
a(4)=6 because it is the smallest number followed by 10,14,15,16,21,22,... whose squares have 2*4 + 1, i.e., 9 divisors.
a(n) = {k = 1; while (numdiv(k^2) != (2*n+1), k++); return (k);} \\ Michel Marcus, Jul 27 2013
For n = 3: (i, j) = (1, 1), so a(3) = 1. (1/2 + 1/2 = 1) For n = 18: (i, j) = (3, 8), (6, 6), (8, 3), so a(18) = 3. (3/15 + 8/10 = 1/5 + 4/5 = 1) For n = 20: (i, j) = (5, 8), (8, 5), so a(20) = 2. For n = 36: (i, j) = (6, 16), (8, 15), (12, 12), (15, 8), (16, 6), so a(36) = 5.
a(n)={my(x=n^2, y=2*n); sum(i=1,(n-1)/2, x-=2*n; y-=3; if(x%y==0,1,0))}
from sympy.abc import i, j from sympy.solvers.diophantine.diophantine import diop_quadratic def A351532(n): return sum(1 for d in diop_quadratic(n**2+3*i*j-2*n*(i+j)) if 0 < d[0] < n and 0 < d[1] < n) # Chai Wah Wu, Feb 15 2022
For n = 8, a(8) = 1260 = 2*2*3*3*5*7 and d(1260^2) = d(2*2*2*2*3*3*3*3*5*5*7*7) = 225 = (2*8-1)^2. For n = 14, a(14) = 18480 and d((2*2*2*2*2*2*2*2*3*5*7*11)^2) = 729 = (2*14-1)^2.
8 is a term since 8^2 = 64 has 7 divisors and no smaller number (smaller square) has that many divisors.
lista(nn) = {v = []; for (n=1, nn, d = numdiv(n^2); if (! vecsearch(v, d), print1(n, ", "); v = Set(concat(v, d))); ); } \\ from Michel Marcus's program for A166721
Comments