cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A061286 Smallest integer for which the number of divisors is the n-th prime.

Original entry on oeis.org

2, 4, 16, 64, 1024, 4096, 65536, 262144, 4194304, 268435456, 1073741824, 68719476736, 1099511627776, 4398046511104, 70368744177664, 4503599627370496, 288230376151711744, 1152921504606846976
Offset: 1

Views

Author

Labos Elemer, May 22 2001

Keywords

Comments

Seems to be the same as "Even numbers with prime number of divisors" - Jason Earls, Jul 04 2001
Except for the first term, smallest number == 1 (mod prime(n)) having n divisors (by Fermat's little theorem). - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 20 2003

Crossrefs

Programs

  • Mathematica
    Table[2^(p-1),{p,Table[Prime[n],{n,1,18}]}] (* Geoffrey Critzer, May 26 2013 *)
  • PARI
    forstep(n=2,100000000,2,x=numdiv(n); if(isprime(x),print(n)))
    
  • PARI
    a(n)=2^(prime(n)-1) \\ Charles R Greathouse IV, Apr 08 2012
    
  • Python
    from sympy import isprime, divisor_count as tau
    [2] + [2**(2*n) for n in range(1, 33) if isprime(tau(2**(2*n)))] # Karl V. Keller, Jr., Jul 10 2020

Formula

a(n) = 2^(prime(n)-1) = 2^A006093(n).
a(n) = A005179(prime(n)). - R. J. Mathar, Aug 09 2019
Sum_{n>=1} 1/a(n) = A119523. - Amiram Eldar, Aug 11 2020

A003680 Smallest number with 2n divisors.

Original entry on oeis.org

2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120
Offset: 1

Views

Author

Keywords

Comments

Refers to the least number which is multiplicatively n-perfect, i.e. least number m the product of whose divisors equals m^n. - Lekraj Beedassy, Sep 18 2004
For n=1 to 5, a(n) equals second term of A008578, A007422, A162947, A048945, A030628. - Michel Marcus, Feb 04 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005179 (n), A061283 (2n-1), A118224 (at least 2n).

Programs

  • Mathematica
    A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {, }][[All, 2]];
    A = {#, DivisorSigma[0, #]}& /@ A005179;
    a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]];
    a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    With[{tbl=Table[{n,DivisorSigma[0,n]},{n,800000}]},Table[SelectFirst[tbl,#[[2]]==2k&],{k,20}]][[;;,1]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
    
  • Python
    from sympy import divisors
    def a(n):
      m = 4*n - 2
      while len(divisors(m)) != 2*n: m += 1
      return m
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021

Formula

Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004

Extensions

More terms from Jud McCranie Oct 15 1997

A137492 Numbers with 29 divisors.

Original entry on oeis.org

268435456, 22876792454961, 37252902984619140625, 459986536544739960976801, 144209936106499234037676064081, 15502932802662396215269535105521, 28351092476867700887730107366063041
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
28th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

A000005(a(n))=29.
a(n)=A000040(n)^(29-1)=A000040(n)^(28). - Omar E. Pol, May 06 2008

A016017 Smallest k such that 1/k can be written as a sum of exactly 2 unit fractions in n ways.

Original entry on oeis.org

1, 2, 4, 8, 6, 32, 64, 12, 256, 512, 24, 2048, 36, 30, 16384, 32768, 96, 72, 262144, 192, 1048576, 2097152, 60, 8388608, 216, 768, 67108864, 288, 1536, 536870912, 1073741824, 120, 576, 8589934592, 6144, 34359738368, 68719476736, 180, 864
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Aug 30 2021: (Start)
a(n) is the smallest number whose square has exactly 2n-1 divisors.
a(n) is the earliest occurrence of 2n-1 in A048691. (End)

Examples

			a(1)=1 and a(2)=2 because 1/2 = 1/3 + 1/6 = 1/4 + 1/4.
a(3)=4 because 1/4 = 1/5 + 1/20 = 1/6 + 1/12 = 1/8 + 1/8.
a(4)=8 because 1/8 = 1/9 + 1/72 = 1/10 + 1/40 = 1/12 + 1/24 = 1/16 + 1/16.
a(5)=6 because 1/6 = 1/7 + 1/42 = 1/8 + 1/24 = 1/9 + 1/18 = 1/10 + 1/15 = 1/12 + 1/12.
		

Crossrefs

Identical to A071571 shifted right.

Programs

  • Mathematica
    f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; t = Table[0, {50}]; Do[a = f[2, n]; If[a < 51 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 2^30}] (* Robert G. Wilson v, Aug 03 2005 *)
  • PARI
    a(n) = {k = 1; while (numdiv(k^2) != (2*n-1), k++); return (k); }; \\ Amiram Eldar, Jan 07 2019 after Michel Marcus at A071571

Formula

a(n+1) <= 2^n.
From Labos Elemer, May 22 2001: (Start)
a(n) = sqrt(A061283(n)).
a(n) = sqrt(Min{k| A000005(k)=2n-1}).
a((p+1)/2) = 2^((p-1)/2) = 2^A005097(i) if p is the i-th odd prime. [Corrected by Jianing Song, Aug 30 2021] (End)
a(n) is the least k such that (tau(k^2) + 1)/2 = n. - Vladeta Jovovic, Aug 01 2001

Extensions

Entry revised by N. J. A. Sloane, Aug 14 2005
Offset corrected by David W. Wilson, Dec 27 2018

A137488 Numbers with 25 divisors.

Original entry on oeis.org

1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 16777216, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^24 (24th powers of A000040, subset of A010812) or p^4*q^4 (A189991), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Haskell
    a137488 n = a137488_list !! (n-1)
    a137488_list = m (map (^ 24) a000040_list) (map (^ 4) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    lst = {}; Do[If[DivisorSigma[0, n] == 25, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    Select[Range[5221*10^4],DivisorSigma[0,#]==25&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    is(n)=numdiv(n)==25 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A137488(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 25.
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 + P(24) = 0.000933328..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A061234 Smallest number with prime(n)^2 divisors where prime(n) is the n-th prime.

Original entry on oeis.org

6, 36, 1296, 46656, 60466176, 2176782336, 2821109907456, 101559956668416, 131621703842267136, 6140942214464815497216, 221073919720733357899776, 10314424798490535546171949056, 13367494538843734067838845976576
Offset: 1

Views

Author

Labos Elemer, Jun 01 2001

Keywords

Examples

			1296 = 2*2*2*2*3*3*3*3 is the smallest number with 25 divisors.
		

Crossrefs

Formula

a(n) = Min_{x : d(x) = A000005(x) = p(n)^2} = 6^(p(n)-1) because x = 2^(pp-1) > 2^(p-1)3^(p-1) holds if p > 1.
a(n) = A005179(A001248(n)). - Amiram Eldar, Jun 21 2024

A137485 Numbers with 22 divisors.

Original entry on oeis.org

3072, 5120, 7168, 11264, 13312, 17408, 19456, 23552, 29696, 31744, 37888, 41984, 44032, 48128, 54272, 60416, 62464, 68608, 72704, 74752, 80896, 84992, 91136, 99328, 103424, 105472, 109568, 111616, 115712, 118098, 130048, 134144, 140288
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^21 or p*q^10, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Maple
    A137485=proc(q) local n;
    for n from 1 to q do if tau(n)=22 then print(n); fi; od; end:
    A137485(10^10);
  • Mathematica
    Select[Range[200000],DivisorSigma[0,#]==22&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==22 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A137485(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**10) for p in primerange(integer_nthroot(x,10)[0]+1))+primepi(integer_nthroot(x,11)[0])-primepi(integer_nthroot(x,21)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=22.

A137491 Numbers with 28 divisors.

Original entry on oeis.org

960, 1344, 1728, 2112, 2240, 2496, 3264, 3520, 3648, 4160, 4416, 4928, 5440, 5568, 5824, 5832, 5952, 6080, 7104, 7290, 7360, 7616, 7872, 8000, 8256, 8512, 9024, 9152, 9280, 9920, 10176, 10206, 10304, 11328, 11712, 11840, 11968, 12864, 12992, 13120
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^27 (subset of A122968), p*q^13, p*q*r^6 (A179672) or p^3*q^6 (A179694), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 28.

A137487 Numbers with 24 divisors.

Original entry on oeis.org

360, 420, 480, 504, 540, 600, 630, 660, 672, 756, 780, 792, 864, 924, 936, 990, 1020, 1050, 1056, 1092, 1120, 1140, 1152, 1170, 1176, 1188, 1224, 1248, 1350, 1368, 1380, 1386, 1400, 1404, 1428, 1470, 1500, 1530, 1540, 1596, 1632, 1638, 1650, 1656, 1710
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^23, p^2*q^7, p*q^2*r^3 (like 360, 504), p*q*r^5 (like 480, 672), p*q*r*s^2 (like 420, 660), p^3*q^5 (like 864) or p*q^11, where p, q, r and s are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n))=24.

A137489 Numbers with 26 divisors.

Original entry on oeis.org

12288, 20480, 28672, 45056, 53248, 69632, 77824, 94208, 118784, 126976, 151552, 167936, 176128, 192512, 217088, 241664, 249856, 274432, 290816, 299008, 323584, 339968, 364544, 397312, 413696, 421888, 438272, 446464, 462848, 520192, 536576
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^25 (5th powers of A050997, subset of A010813) or p*q^12, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n))=26.
Showing 1-10 of 13 results. Next