cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A189991 Numbers with prime factorization p^4*q^4.

Original entry on oeis.org

1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625, 54700816, 57289761, 68574961, 74805201
Offset: 1

Views

Author

Keywords

Comments

The primes p and q must be distinct, or else the product has factorization p^8 (or q^8, for that matter).

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[If[Sort[Last/@FactorInteger[n]] == {4, 4}, Print[n]; AppendTo[lst, n]], {n,55000000}]; lst (* Orlovsky *)
    lim = 10^8; pMax = PrimePi[(lim/16)^(1/4)]; Select[Union[Flatten[Table[Prime[i]^4 Prime[j]^4, {i, 2, pMax}, {j, i - 1}]]], # <= lim &] (* Alonso del Arte, May 03 2011 *)
    With[{nn=30},Take[Union[Times@@@(Subsets[Prime[Range[nn]],{2}]^4)],nn]] (* Harvey P. Dale, Mar 05 2015 *)
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2, lim^(1/8), t=p^4;forprime(q=p+1, (lim\t)^(1/4), listput(v,t*q^4))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 24 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A189991(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 = (A085964^2 - A085968)/2 = 0.000933..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n) = A006881(n)^4 = A085986(n)^2. - Chai Wah Wu, Mar 27 2025

A135581 The 5th divisor of numbers with 25 divisors.

Original entry on oeis.org

6, 8, 8, 15, 21, 11, 13, 27, 16, 35, 16, 27, 16, 27, 55, 27, 16, 16, 16, 65, 27, 16, 77, 16, 85, 16, 29, 91, 31, 16, 95, 16, 37, 115, 16, 119, 16, 41, 43, 133, 16, 47, 16, 143, 125, 16, 125, 16, 53, 161, 16, 59, 16, 61, 125, 187, 16, 67, 16, 203, 125, 16, 209, 71, 16, 125
Offset: 1

Views

Author

G. H. Ens (GerardEns(AT)gmail.com), Feb 24 2008

Keywords

Comments

n=1 means the first number that has 25 divisors (1296), 6 is the 5th divisor of 1296. The second number with 25 divisors is 10000 and its 5th divisor is 8
This is one example of such a sequence where the divisor index is the square root of the total number of divisors (self included).
Other examples would be the 6th divisor of numbers with 36 divisors, 7th divisor of numbers with 49 divisors, etc.
Choice of the square root is arbitrary.
All but 16 primes {2, 3, 5, 7, 17, 19, 23, 83, 89, 97, 101, 103, 107, 109, 113} are in this sequence; p^3 and p^4 are in this sequence for all prime p; pq is in this sequence for all prime p and q with p < q < p^2. No other terms are members. - Charles R Greathouse IV, Nov 28 2011

Examples

			a(1) = 6 because 6 is the 5th divisor of 1296 and 1296 is the first number with 25 divisors.
a(2) = 8 because 8 is the 5th divisor of 10000 and 10000 is the second number with 25 divisors.
		

Crossrefs

Programs

  • Haskell
    a135581 n = [d | d <- [1..], a137488 n `mod` d == 0] !! 4
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    upto=10^10;With[{max1=Ceiling[Power[upto, (4)^-1]],max2=Ceiling[ Power[ upto, (24)^-1]]},Take[Divisors[#][[5]]&/@Select[Union[Join[ Range[ max2]^24, Times@@@(Subsets[Range[max1],{2}]^4)]],DivisorSigma[0,#] == 25&], Ceiling[max1/4]]] (* Harvey P. Dale, Nov 25 2011 *)
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange, divisors
    def A135581(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0])
        return divisors(bisection(f,n,n))[4] # Chai Wah Wu, Feb 22 2025

Extensions

Corrected and extended by R. J. Mathar, Apr 21 2008. The original entries were wrong from the 16th term onwards.

A175755 Numbers with 49 divisors.

Original entry on oeis.org

46656, 1000000, 7529536, 11390625, 85766121, 113379904, 308915776, 1291467969, 1544804416, 1838265625, 3010936384, 3518743761, 9474296896, 17596287801, 27680640625, 34296447249, 38068692544, 56800235584, 75418890625, 107918163081, 164206490176, 208422380089
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^48 and p^6*q^6, where p and q are distinct primes.

Examples

			a(1) = A114334(49); a(2) = A159765(49).
		

Crossrefs

Programs

  • Haskell
    a175755 n = a175755_list !! (n-1)
    a175755_list = m (map (^ 48) a000040_list) (map (^ 6) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    Select[Range[100000000],DivisorSigma[0,#]==48&] (* Vladimir Joseph Stephan Orlovsky, May 06 2011 *)
  • PARI
    is(n)=numdiv(n)==49 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A175755(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,6)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1))-primepi(integer_nthroot(x,48)[0]))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 49.
Sum_{n>=1} 1/a(n) = (P(6)^2 - P(12))/2 + P(48) = 0.0000226806..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

Extensions

Extended by T. D. Noe, May 08 2011

A336595 Numbers whose number of divisors is divisible by 5.

Original entry on oeis.org

16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200, 1232
Offset: 1

Views

Author

Amiram Eldar, Jul 26 2020

Keywords

Comments

The asymptotic density of this sequence is 1 - zeta(5)/zeta(4) = 0.0419426259... (Sathe, 1945).

Examples

			16 is a term since A000005(16) = 5 is divisible by 5.
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 63.

Crossrefs

Programs

  • Maple
    q:= n-> is(irem(numtheory[tau](n), 5)=0):
    select(q, [$1..1300])[];  # Alois P. Heinz, Jul 26 2020
  • Mathematica
    Select[Range[1300], Divisible[DivisorSigma[0, #], 5] &]

Formula

A030514 UNION A030628 \ {1} UNION A030633 UNION A030638 UNION A137488 UNION A137493 UNION A175745 UNION A175749 UNION A175752 UNION A175756 UNION ... - R. J. Mathar, May 05 2023

A175750 Numbers with 42 divisors.

Original entry on oeis.org

2880, 4032, 4800, 6336, 7488, 9408, 9792, 10944, 11200, 13248, 14580, 15552, 15680, 16704, 17600, 17856, 20412, 20800, 21312, 23232, 23328, 23616, 24768, 27072, 27200, 30400, 30528, 32076, 32448, 33984, 34496, 35136, 36450, 36800, 37908, 38592, 38720, 40768
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^41, p^20*q^1, p^13*q^2, p^6*q^5 and p^6*q^2*r^1 (A179703), where p, q, and r are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=42.

Extensions

Extended by T. D. Noe, May 08 2011

A175756 Numbers with 50 divisors.

Original entry on oeis.org

6480, 9072, 14256, 16848, 22032, 24624, 29808, 30000, 37584, 40176, 41472, 47952, 53136, 55728, 60912, 68688, 70000, 76464, 79056, 86832, 92016, 94608, 101250, 102384, 107568, 110000, 115248, 115344, 125712, 130000, 130896, 133488
Offset: 1

Views

Author

Jaroslav Krizek, Aug 27 2010

Keywords

Comments

Numbers of the forms p^49, p^24*q^1, p^9*q^4 and p^4*q^4*r^1 (A190012), where p, q and r are distinct primes.

Crossrefs

Programs

Formula

A000005(a(n))=50.
Showing 1-6 of 6 results.