cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A140605 a(n) = A003680(n)/A005179(n), or 0 if quotient is not an integer.

Original entry on oeis.org

2, 3, 3, 4, 3, 5, 3, 5, 5, 5, 3, 6, 3, 5, 5, 7, 3, 7, 3, 7, 5, 5, 3, 7, 5, 5, 7, 7, 3, 7, 3, 9, 5, 5, 5, 8, 3, 5, 5, 9, 3, 7, 3, 7, 7, 5, 3, 11, 5, 7, 5, 7, 3, 8, 5, 9, 5, 5, 3, 11, 3, 5, 7, 11, 5, 7, 3, 7, 5, 7, 3, 11, 3, 5, 7, 7, 5, 7, 3, 11, 8, 5, 3, 11, 5, 5, 5, 9, 3, 11, 5, 7, 5, 5, 5, 12, 3, 7, 7, 11, 3
Offset: 1

Views

Author

J. Lowell, Jul 07 2008

Keywords

Comments

a(810) = 0; the quotient is the non-integer 144/11.
n=810 is the only such case among the first 1000 terms. - Antti Karttunen, Oct 21 2017
a(n) = 0 for n in {810, 10206, 13608, 18225, 24300, 32400, ...}. - David A. Corneth, Oct 05 2022

Examples

			a(10) = 5 because A003680(10) = 240 and A005179(10) = 48 and 240/48=5.
		

Crossrefs

Extensions

More terms from R. J. Mathar, Feb 19 2009

A061286 Smallest integer for which the number of divisors is the n-th prime.

Original entry on oeis.org

2, 4, 16, 64, 1024, 4096, 65536, 262144, 4194304, 268435456, 1073741824, 68719476736, 1099511627776, 4398046511104, 70368744177664, 4503599627370496, 288230376151711744, 1152921504606846976
Offset: 1

Views

Author

Labos Elemer, May 22 2001

Keywords

Comments

Seems to be the same as "Even numbers with prime number of divisors" - Jason Earls, Jul 04 2001
Except for the first term, smallest number == 1 (mod prime(n)) having n divisors (by Fermat's little theorem). - Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 20 2003

Crossrefs

Programs

  • Mathematica
    Table[2^(p-1),{p,Table[Prime[n],{n,1,18}]}] (* Geoffrey Critzer, May 26 2013 *)
  • PARI
    forstep(n=2,100000000,2,x=numdiv(n); if(isprime(x),print(n)))
    
  • PARI
    a(n)=2^(prime(n)-1) \\ Charles R Greathouse IV, Apr 08 2012
    
  • Python
    from sympy import isprime, divisor_count as tau
    [2] + [2**(2*n) for n in range(1, 33) if isprime(tau(2**(2*n)))] # Karl V. Keller, Jr., Jul 10 2020

Formula

a(n) = 2^(prime(n)-1) = 2^A006093(n).
a(n) = A005179(prime(n)). - R. J. Mathar, Aug 09 2019
Sum_{n>=1} 1/a(n) = A119523. - Amiram Eldar, Aug 11 2020

A137492 Numbers with 29 divisors.

Original entry on oeis.org

268435456, 22876792454961, 37252902984619140625, 459986536544739960976801, 144209936106499234037676064081, 15502932802662396215269535105521, 28351092476867700887730107366063041
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
28th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

A000005(a(n))=29.
a(n)=A000040(n)^(29-1)=A000040(n)^(28). - Omar E. Pol, May 06 2008

A061283 Smallest number with exactly 2n-1 divisors.

Original entry on oeis.org

1, 4, 16, 64, 36, 1024, 4096, 144, 65536, 262144, 576, 4194304, 1296, 900, 268435456, 1073741824, 9216, 5184, 68719476736, 36864, 1099511627776, 4398046511104, 3600, 70368744177664, 46656, 589824, 4503599627370496, 82944
Offset: 1

Views

Author

Labos Elemer, May 22 2001

Keywords

Comments

The terms are always squares (because the divisors of a nonsquare N come in pairs, d and N/d, and so their number is always even - N. J. A. Sloane, Dec 26 2018).

Examples

			For n=15, a(15)=144 with 15 divisors: 1,2,3,4,6,8,9,12,16,18,24,36,48,72 and 144.
		

Crossrefs

Programs

  • Mathematica
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n-1] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)

Formula

a(n) = Min{k | A000005(k)=2n-1}.
a((p+1)/2) = 2^(p-1) for odd prime p. [Corrected by Jianing Song, Aug 30 2021]
From Jianing Song, Aug 30 2021: (Start)
a(n) = A016017(n)^2.
a(n) <= 2^(2n-2), where the equality holds if and only if n=1 or 2n-1 is prime. (End)

A016017 Smallest k such that 1/k can be written as a sum of exactly 2 unit fractions in n ways.

Original entry on oeis.org

1, 2, 4, 8, 6, 32, 64, 12, 256, 512, 24, 2048, 36, 30, 16384, 32768, 96, 72, 262144, 192, 1048576, 2097152, 60, 8388608, 216, 768, 67108864, 288, 1536, 536870912, 1073741824, 120, 576, 8589934592, 6144, 34359738368, 68719476736, 180, 864
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Aug 30 2021: (Start)
a(n) is the smallest number whose square has exactly 2n-1 divisors.
a(n) is the earliest occurrence of 2n-1 in A048691. (End)

Examples

			a(1)=1 and a(2)=2 because 1/2 = 1/3 + 1/6 = 1/4 + 1/4.
a(3)=4 because 1/4 = 1/5 + 1/20 = 1/6 + 1/12 = 1/8 + 1/8.
a(4)=8 because 1/8 = 1/9 + 1/72 = 1/10 + 1/40 = 1/12 + 1/24 = 1/16 + 1/16.
a(5)=6 because 1/6 = 1/7 + 1/42 = 1/8 + 1/24 = 1/9 + 1/18 = 1/10 + 1/15 = 1/12 + 1/12.
		

Crossrefs

Identical to A071571 shifted right.

Programs

  • Mathematica
    f[j_, n_] := (Times @@ (j(Last /@ FactorInteger[n]) + 1) + j - 1)/j; t = Table[0, {50}]; Do[a = f[2, n]; If[a < 51 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 2^30}] (* Robert G. Wilson v, Aug 03 2005 *)
  • PARI
    a(n) = {k = 1; while (numdiv(k^2) != (2*n-1), k++); return (k); }; \\ Amiram Eldar, Jan 07 2019 after Michel Marcus at A071571

Formula

a(n+1) <= 2^n.
From Labos Elemer, May 22 2001: (Start)
a(n) = sqrt(A061283(n)).
a(n) = sqrt(Min{k| A000005(k)=2n-1}).
a((p+1)/2) = 2^((p-1)/2) = 2^A005097(i) if p is the i-th odd prime. [Corrected by Jianing Song, Aug 30 2021] (End)
a(n) is the least k such that (tau(k^2) + 1)/2 = n. - Vladeta Jovovic, Aug 01 2001

Extensions

Entry revised by N. J. A. Sloane, Aug 14 2005
Offset corrected by David W. Wilson, Dec 27 2018

A137488 Numbers with 25 divisors.

Original entry on oeis.org

1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 16777216, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^24 (24th powers of A000040, subset of A010812) or p^4*q^4 (A189991), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Haskell
    a137488 n = a137488_list !! (n-1)
    a137488_list = m (map (^ 24) a000040_list) (map (^ 4) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    lst = {}; Do[If[DivisorSigma[0, n] == 25, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    Select[Range[5221*10^4],DivisorSigma[0,#]==25&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    is(n)=numdiv(n)==25 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A137488(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 25.
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 + P(24) = 0.000933328..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A061234 Smallest number with prime(n)^2 divisors where prime(n) is the n-th prime.

Original entry on oeis.org

6, 36, 1296, 46656, 60466176, 2176782336, 2821109907456, 101559956668416, 131621703842267136, 6140942214464815497216, 221073919720733357899776, 10314424798490535546171949056, 13367494538843734067838845976576
Offset: 1

Views

Author

Labos Elemer, Jun 01 2001

Keywords

Examples

			1296 = 2*2*2*2*3*3*3*3 is the smallest number with 25 divisors.
		

Crossrefs

Formula

a(n) = Min_{x : d(x) = A000005(x) = p(n)^2} = 6^(p(n)-1) because x = 2^(pp-1) > 2^(p-1)3^(p-1) holds if p > 1.
a(n) = A005179(A001248(n)). - Amiram Eldar, Jun 21 2024

A137485 Numbers with 22 divisors.

Original entry on oeis.org

3072, 5120, 7168, 11264, 13312, 17408, 19456, 23552, 29696, 31744, 37888, 41984, 44032, 48128, 54272, 60416, 62464, 68608, 72704, 74752, 80896, 84992, 91136, 99328, 103424, 105472, 109568, 111616, 115712, 118098, 130048, 134144, 140288
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^21 or p*q^10, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Maple
    A137485=proc(q) local n;
    for n from 1 to q do if tau(n)=22 then print(n); fi; od; end:
    A137485(10^10);
  • Mathematica
    Select[Range[200000],DivisorSigma[0,#]==22&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==22 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A137485(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**10) for p in primerange(integer_nthroot(x,10)[0]+1))+primepi(integer_nthroot(x,11)[0])-primepi(integer_nthroot(x,21)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=22.

A137491 Numbers with 28 divisors.

Original entry on oeis.org

960, 1344, 1728, 2112, 2240, 2496, 3264, 3520, 3648, 4160, 4416, 4928, 5440, 5568, 5824, 5832, 5952, 6080, 7104, 7290, 7360, 7616, 7872, 8000, 8256, 8512, 9024, 9152, 9280, 9920, 10176, 10206, 10304, 11328, 11712, 11840, 11968, 12864, 12992, 13120
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^27 (subset of A122968), p*q^13, p*q*r^6 (A179672) or p^3*q^6 (A179694), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 28.

A292580 T(n,k) is the start of the first run of exactly k consecutive integers having exactly 2n divisors. Table read by rows.

Original entry on oeis.org

5, 2, 6, 14, 33, 12, 44, 603, 242, 10093613546512321, 24, 104, 230, 3655, 11605, 28374, 171893, 48, 2511, 7939375, 60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346
Offset: 1

Views

Author

Jon E. Schoenfield, Sep 19 2017

Keywords

Comments

The number of terms in row n is A119479(2n).
Düntsch and Eggleton (1989) has typos for T(3,5) and T(10,3) (called D(6,5) and D(20,3) in their notation). Letsko (2015) and Letsko (2017) both have a wrong value for T(7,3).
The first value required to extend the data is T(6,13) <= 586683019466361719763403545; the first unknown value that may exist is T(12,19). See the a-file for other known values and upper bounds up to T(50,7).

Examples

			T(1,1) = 5 because 5 is the start of the first "run" of exactly 1 integer having exactly 2*1=2 divisors (5 is the first prime p such that both p-1 and p+1 are nonprime);
T(1,2) = 2 because 2 is the start of the first run of exactly 2 consecutive integers having exactly 2*1=2 divisors (2 and 3 are the only consecutive integers that are prime);
T(3,4) = 242 because the first run of exactly 4 consecutive integers having exactly 2*3=6 divisors is 242 = 2*11^2, 243 = 3^5, 244 = 2^2*61, 245 = 5*7^2.
Table begins:
   n  T(n,1), T(n,2), ...
  ==  ========================================================
   1  5, 2;
   2  6, 14, 33;
   3  12, 44, 603, 242, 10093613546512321;
   4  24, 104, 230, 3655, 11605, 28374, 171893;
   5  48, 2511, 7939375;
   6  60, 735, 1274, 19940, 204323, 368431323, 155385466971, 18652995711772, 15724736975643, 2973879756088065948, 9887353188984012120346, 120402988681658048433948, T(6,13), ...;
   7  192, 29888, 76571890623;
   8  120, 2295, 8294, 153543, 178086, 5852870, 17476613;
   9  180, 6075, 959075, 66251139635486389922, T(9,5);
  10  240, 5264, 248750, 31805261872, 1428502133048749, 8384279951009420621, 189725682777797295066519373;
  11  3072, 2200933376, 104228508212890623;
  12  360, 5984, 72224, 2919123, 15537948, 973277147, 33815574876, 1043710445721, 2197379769820, 2642166652554075, 17707503256664346, T(12,12), ...;
  13  12288, 689278976, 1489106237081787109375;
  14  960, 156735, 23513890624, 4094170438109373, 55644509293039461218749, 4230767238315793911295500109374, 273404501868270838132985214432619890621;
  15  720, 180224, 145705879375, 10868740069638250502059754282498, T(15,5);
  16  840, 21735, 318680, 6800934, 57645182, 1194435205, 14492398389;
  ...
		

Crossrefs

Formula

T(n,2) = A075036(n). - Jon E. Schoenfield, Sep 23 2017

Extensions

a(1)-a(25) from Düntsch and Eggleton (1989) with corrections by Jon E. Schoenfield, Sep 19 2017
a(26)-a(27) from Giovanni Resta, Sep 20 2017
a(28)-a(29) from Hugo van der Sanden, Jan 12 2022
a(30) from Hugo van der Sanden, Sep 03 2022
a(31) added by Hugo van der Sanden, Dec 05 2022; see "calculation of T(6,11)" link for a list of the people involved.
a(32) added by Hugo van der Sanden, Dec 18 2022; see "calculation of T(6,12)" link for a list of the people involved.
Showing 1-10 of 23 results. Next