cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A005179 Smallest number with exactly n divisors.

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240, 576, 3072, 4194304, 360, 1296, 12288, 900, 960, 268435456, 720, 1073741824, 840, 9216, 196608, 5184, 1260, 68719476736, 786432, 36864, 1680, 1099511627776, 2880
Offset: 1

Views

Author

N. J. A. Sloane, David Singmaster

Keywords

Comments

A number n is called ordinary iff a(n)=A037019(n). Brown shows that the ordinary numbers have density 1 and all squarefree numbers are ordinary. See A072066 for the extraordinary or exceptional numbers. - M. F. Hasler, Oct 14 2014
All terms are in A025487. Therefore, a(n) is even for n > 1. - David A. Corneth, Jun 23 2017 [corrected by Charles R Greathouse IV, Jul 05 2023]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 52.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 89.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a005179 n = succ $ fromJust $ elemIndex n $ map a000005 [1..]
    -- Reinhard Zumkeller, Apr 01 2011
    
  • Maple
    A005179_list := proc(SearchLimit, ListLength)
    local L, m, i, d; m := 1;
    L := array(1..ListLength,[seq(0,i=1..ListLength)]);
    for i from 1 to SearchLimit while m <= ListLength do
      d := numtheory[tau](i);
      if d <= ListLength and 0 = L[d] then L[d] := i;
      m := m + 1; fi
    od:
    print(L) end: A005179_list(65537,18);
    # If a '0' appears in the list the search limit has to be increased. - Peter Luschny, Mar 09 2011
    # alternative
    # Construct list of ordered lists of factorizations of n with
    # minimum divisors mind.
    # Returns a list with A001055(n) entries if called with mind=2.
    # Example: print(ofact(10^3,2))
    ofact := proc(n,mind)
        local fcts,d,rec,r ;
        fcts := [] ;
        for d in numtheory[divisors](n) do
            if d >= mind then
                if d = n then
                    fcts := [op(fcts),[n]] ;
                else
                    # recursive call supposed one more factor fixed now
                    rec := procname(n/d,max(d,mind)) ;
                    for r in rec do
                        fcts := [op(fcts),[d,op(r)]] ;
                    end do:
                end if;
            end if;
        end do:
        return fcts ;
    end proc:
    A005179 := proc(n)
        local Lexp,a,eList,cand,maxxrt ;
        if n = 1 then
            return 1;
        end if;
        Lexp := ofact(n,2) ;
        a := 0 ;
        for eList in Lexp do
            maxxrt := ListTools[Reverse](eList) ;
            cand := mul( ithprime(i)^ ( op(i,maxxrt)-1),i=1..nops(maxxrt)) ;
            if a =0 or cand < a then
                a := cand ;
            end if;
        end do:
        a ;
    end proc:
    seq(A005179(n),n=1..40) ; # R. J. Mathar, Jun 06 2024
  • Mathematica
    a = Table[ 0, {43} ]; Do[ d = Length[ Divisors[ n ]]; If[ d < 44 && a[[ d ]] == 0, a[[ d]] = n], {n, 1, 1099511627776} ]; a
    (* Second program: *)
    Function[s, Map[Lookup[s, #] &, Range[First@ Complement[Range@ Max@ #, #] - 1]] &@ Keys@ s]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    a[n_] := Module[{e = f[n] - 1}, Min[Times @@@ ((Prime[Range[Length[#], 1, -1]]^#) & /@ e)]]; Array[a, 100] (* Amiram Eldar, Jul 26 2025 using the function f by T. D. Noe at A162247 *)
  • PARI
    (prodR(n,maxf)=my(dfs=divisors(n),a=[],r); for(i=2,#dfs, if( dfs[i]<=maxf, if(dfs[i]==n, a=concat(a,[[n]]), r=prodR(n/dfs[i],min(dfs[i],maxf)); for(j=1,#r, a=concat(a,[concat(dfs[i],r[j])]))))); a); A005179(n)=my(pf=prodR(n,n),a=1,b); for(i=1,#pf, b=prod(j=1,length(pf[i]),prime(j)^(pf[i][j]-1)); if(bA005179(n)", ")) \\ R. J. Mathar, May 26 2008, edited by M. F. Hasler, Oct 11 2014
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A005179(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 2^(p-1) for primes p: a(A000040(n)) = A061286(n); a(p^2) = 6^(p-1) for primes p: a(A001248(n)) = A061234(n); a(p*q) = 2^(q-1)*3^(p-1) for primes p<=q: a(A001358(n)) = A096932(n); a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes pA005179(A007304(n)) = A061299(n). - Reinhard Zumkeller, Jul 15 2004 [This can be continued to arbitrarily many distinct prime factors since no numbers in A072066 (called "exceptional" or "extraordinary") are squarefree. - Jianing Song, Jul 18 2025]
a(p^n) = (2*3...*p_n)^(p-1) for p > log p_n / log 2. Unpublished proof from Andrzej Schinzel. - Thomas Ordowski, Jul 22 2005
If p is a prime and n=p^k then a(p^k)=(2*3*...*s_k)^(p-1) where (s_k) is the numbers of the form q^(p^j) for every q and j>=0, according to Grost (1968), Theorem 4. For example, if p=2 then a(2^k) is the product of the first k members of the A050376 sequence: number of the form q^(2^j) for j>=0, according to Ramanujan (1915). - Thomas Ordowski, Aug 30 2005
a(2^k) = A037992(k). - Thomas Ordowski, Aug 30 2005
a(n) <= A037019(n) with equality except for n in A072066. - M. F. Hasler, Jun 15 2022

Extensions

More terms from David W. Wilson

A096932 Smallest number having exactly s divisors, where s is the n-th semiprime (A001358).

Original entry on oeis.org

6, 12, 36, 48, 192, 144, 576, 3072, 1296, 12288, 9216, 196608, 5184, 786432, 36864, 12582912, 46656, 589824, 82944, 2359296, 805306368, 3221225472, 331776, 37748736, 206158430208, 746496, 3298534883328, 5308416, 13194139533312, 2415919104, 2985984, 9663676416
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2004

Keywords

Comments

This is to smallest integer for which the number of divisors is the n-th prime (A061286) as semiprimes (A001358) are to primes (A000040). - Jonathan Vos Post, Feb 03 2011

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, q}, If[Total[f[[;;,2]]] == 2, p=f[[1,1]]; q = n/p; 2^(q-1) * 3^(p-1) ,Nothing]]; Array[s, 100] (* Amiram Eldar, Apr 13 2024 *)

Formula

A000005(a(n)) = A001358(n) and A000005(m) <> A001358(n) for m < a(n).
a(n) = A005179(A001358(n)).
a(p*q) = 2^(q-1) * 3^(p-1) for primes p <= q.
a(A000040(i)*A000040(j)) = 2^(A084127(j)-1) * 3^(A084127(i)-1) for i <= j.

A061299 Least number whose number of divisors is A007304(n) (the n-th number that is the product of 3 distinct primes).

Original entry on oeis.org

720, 2880, 46080, 25920, 184320, 2949120, 129600, 414720, 11796480, 1658880, 188743680, 3732480, 2073600, 26542080, 12079595520, 14929920, 48318382080, 106168320, 8294400, 3092376453120, 1698693120, 18662400, 238878720
Offset: 1

Views

Author

Labos Elemer, Jun 05 2001

Keywords

Comments

All terms are divisible by a(1) = 720, the first entry.
All terms [=a(j)], not only arguments [=j] have 3 distinct prime factors at exponents determined by the p,q,r factors of their arguments: a(pqr) = RPQ.

Examples

			For n = 5: A007304(5) = 78 = 2*3*13, A005179(78) = 184320 = (2^12)*(3^2)*(5^1) = a(5).
		

Crossrefs

Formula

a(n) = A005179(A007304(n)).
Min{x; A000005(x) = pqr} p, q, r are distinct primes. If k = pqr and p > q > r then A005179(k) = 2^(p-1)*3^(q-1)*5^(r-1).
From Reinhard Zumkeller, Jul 15 2004: (Start)
A000005(a(n)) = A007304(n).
A000005(m) != A007304(n) for m < a(n).
a(n) = A005179(A007304(n)).
a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes p < m < q.
a(A000040(i)*A000040(j)*A000040(k)) = 2^(A084127(k)-1) * 3^(A084127(j)-1) * 5^(A084127(i)-1) for i < j < k. (End)

Extensions

Edited by N. J. A. Sloane, Apr 20 2007

A061707 Smallest number with exactly n^2 divisors.

Original entry on oeis.org

1, 6, 36, 120, 1296, 1260, 46656, 7560, 44100, 45360, 60466176, 110880, 2176782336, 1632960, 1587600, 1081080, 2821109907456, 3880800, 101559956668416, 6486480, 57153600, 2116316160, 131621703842267136, 21621600, 1944810000, 76187381760
Offset: 1

Views

Author

Labos Elemer, Jun 19 2001

Keywords

Comments

For n = prime see A061234.

Examples

			For n = 6: a(6) = 1260 = 2*2*3*3*5*7 and d(1260) = 36.
		

Crossrefs

Cf. A000005, A000040, A000290, A005179, A061234, A300357 (1st bisection).

Programs

  • Mathematica
    a[n_]:=(f=Flatten[Table@@@FactorInteger[n^2]]; Min[Times@@(Prime@Range@Length[s=Reverse@#-1]^s)&/@Union[Flatten[(ff=#;Union[Sort/@(Times@@@TakeList[ff,#]&/@Flatten[Permutations/@IntegerPartitions[Length@f],1])])&/@Permutations@f,1]]]);Array[a,26] (* Giorgos Kalogeropoulos, Dec 10 2021 *)
  • PARI
    a(n) = {my(k = 1); while (numdiv(k) != n^2, k++); k;} \\ Michel Marcus, Sep 05 2017

Formula

a(n) = Min_{x : d(x) = n^2} = A005179(A000290(n)).
A000005(a(n)) = A000290(n).
a(prime(n)) = A061234(n). - Bernard Schott, Jun 21 2019
a(n) = A005179(n^2). - Amiram Eldar, Feb 04 2025

Extensions

More terms from Don Reble, Nov 08 2001
Offset corrected by Hagen von Eitzen, Jun 05 2009
a(24)-a(26) from Ray Chandler, Jun 19 2009

A061236 Smallest number with prime(n)^3 divisors where prime(n) is n-th prime.

Original entry on oeis.org

24, 900, 810000, 729000000, 590490000000000, 531441000000000000, 430467210000000000000000, 387420489000000000000000000, 313810596090000000000000000000000, 228767924549610000000000000000000000000000, 205891132094649000000000000000000000000000000
Offset: 1

Views

Author

Labos Elemer, Jun 01 2001

Keywords

Examples

			If p = 2, then d(128) = d(24) = d(30) = 8 and a(1) = 24 < 30 is the smallest.
If p = 5, then 2^124 > (2^24)*(3^4) > 30^4 = 810000 = a(3).
		

Crossrefs

Formula

For p = 2, 24 is the solution. If a prime p > 2, the suitable powers of 30 are the least solutions: a(n) = Min{x | d(x) = A000005(x) = p(n)^3} = 30^(prime(n)-1). d(2^(ppp-1)) = d(2^(pp-1)*3^(p-1)) = d(30^(p-1)) = p^3 and 2^(ppp-1) > 2^(pp-1)*3^(p-1) > 30^(p-1) holds if p > 2.
a(n) = A005179(A030078(n)) = A005179(prime(n)^3). - Amiram Eldar, Jan 23 2025

Extensions

a(10)-a(11) from Amiram Eldar, Jan 23 2025
Showing 1-5 of 5 results.