A096933 Duplicate of A061299.
720, 2880, 46080, 25920, 184320, 2949120, 129600, 414720, 11796480, 1658880
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
From _Gus Wiseman_, May 27 2021: (Start) The sequence of terms together with their prime factors begins: 4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47 6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71 9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13 10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29 14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73 15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31 21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79 22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53 25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23 26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83 33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13 34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59 35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89 38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61 39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37 (End)
a001358 n = a001358_list !! (n-1) a001358_list = filter ((== 2) . a001222) [1..]
[n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc: seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *) Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
from sympy import factorint def ok(n): return sum(factorint(n).values()) == 2 print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
from math import isqrt from sympy import primepi, prime def A001358(n): def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 23 2024
import Data.List (elemIndex) import Data.Maybe (fromJust) a005179 n = succ $ fromJust $ elemIndex n $ map a000005 [1..] -- Reinhard Zumkeller, Apr 01 2011
A005179_list := proc(SearchLimit, ListLength) local L, m, i, d; m := 1; L := array(1..ListLength,[seq(0,i=1..ListLength)]); for i from 1 to SearchLimit while m <= ListLength do d := numtheory[tau](i); if d <= ListLength and 0 = L[d] then L[d] := i; m := m + 1; fi od: print(L) end: A005179_list(65537,18); # If a '0' appears in the list the search limit has to be increased. - Peter Luschny, Mar 09 2011 # alternative # Construct list of ordered lists of factorizations of n with # minimum divisors mind. # Returns a list with A001055(n) entries if called with mind=2. # Example: print(ofact(10^3,2)) ofact := proc(n,mind) local fcts,d,rec,r ; fcts := [] ; for d in numtheory[divisors](n) do if d >= mind then if d = n then fcts := [op(fcts),[n]] ; else # recursive call supposed one more factor fixed now rec := procname(n/d,max(d,mind)) ; for r in rec do fcts := [op(fcts),[d,op(r)]] ; end do: end if; end if; end do: return fcts ; end proc: A005179 := proc(n) local Lexp,a,eList,cand,maxxrt ; if n = 1 then return 1; end if; Lexp := ofact(n,2) ; a := 0 ; for eList in Lexp do maxxrt := ListTools[Reverse](eList) ; cand := mul( ithprime(i)^ ( op(i,maxxrt)-1),i=1..nops(maxxrt)) ; if a =0 or cand < a then a := cand ; end if; end do: a ; end proc: seq(A005179(n),n=1..40) ; # R. J. Mathar, Jun 06 2024
a = Table[ 0, {43} ]; Do[ d = Length[ Divisors[ n ]]; If[ d < 44 && a[[ d ]] == 0, a[[ d]] = n], {n, 1, 1099511627776} ]; a (* Second program: *) Function[s, Map[Lookup[s, #] &, Range[First@ Complement[Range@ Max@ #, #] - 1]] &@ Keys@ s]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *) mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *) a[n_] := Module[{e = f[n] - 1}, Min[Times @@@ ((Prime[Range[Length[#], 1, -1]]^#) & /@ e)]]; Array[a, 100] (* Amiram Eldar, Jul 26 2025 using the function f by T. D. Noe at A162247 *)
(prodR(n,maxf)=my(dfs=divisors(n),a=[],r); for(i=2,#dfs, if( dfs[i]<=maxf, if(dfs[i]==n, a=concat(a,[[n]]), r=prodR(n/dfs[i],min(dfs[i],maxf)); for(j=1,#r, a=concat(a,[concat(dfs[i],r[j])]))))); a); A005179(n)=my(pf=prodR(n,n),a=1,b); for(i=1,#pf, b=prod(j=1,length(pf[i]),prime(j)^(pf[i][j]-1)); if(bA005179(n)", ")) \\ R. J. Mathar, May 26 2008, edited by M. F. Hasler, Oct 11 2014
from math import prod from sympy import isprime, divisors, prime def A005179(n): def mult_factors(n): if isprime(n): return [(n,)] c = [] for d in divisors(n,generator=True): if 1Chai Wah Wu, Aug 17 2024
From _Gus Wiseman_, Nov 05 2020: (Start) Also Heinz numbers of strict integer partitions into three parts, where the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). These partitions are counted by A001399(n-6) = A069905(n-3), with ordered version A001399(n-6)*6. The sequence of terms together with their prime indices begins: 30: {1,2,3} 182: {1,4,6} 286: {1,5,6} 42: {1,2,4} 186: {1,2,11} 290: {1,3,10} 66: {1,2,5} 190: {1,3,8} 310: {1,3,11} 70: {1,3,4} 195: {2,3,6} 318: {1,2,16} 78: {1,2,6} 222: {1,2,12} 322: {1,4,9} 102: {1,2,7} 230: {1,3,9} 345: {2,3,9} 105: {2,3,4} 231: {2,4,5} 354: {1,2,17} 110: {1,3,5} 238: {1,4,7} 357: {2,4,7} 114: {1,2,8} 246: {1,2,13} 366: {1,2,18} 130: {1,3,6} 255: {2,3,7} 370: {1,3,12} 138: {1,2,9} 258: {1,2,14} 374: {1,5,7} 154: {1,4,5} 266: {1,4,8} 385: {3,4,5} 165: {2,3,5} 273: {2,4,6} 399: {2,4,8} 170: {1,3,7} 282: {1,2,15} 402: {1,2,19} 174: {1,2,10} 285: {2,3,8} 406: {1,4,10} (End)
a007304 n = a007304_list !! (n-1) a007304_list = filter f [1..] where f u = p < q && q < w && a010051 w == 1 where p = a020639 u; v = div u p; q = a020639 v; w = div v q -- Reinhard Zumkeller, Mar 23 2014
with(numtheory): a:=proc(n) if bigomega(n)=3 and nops(factorset(n))=3 then n else fi end: seq(a(n),n=1..450); # Emeric Deutsch A007304 := proc(n) option remember; local a; if n =1 then 30; else for a from procname(n-1)+1 do if bigomega(a)=3 and nops(factorset(a))=3 then return a; end if; end do: end if; end proc: # R. J. Mathar, Dec 06 2016 is_a := proc(n) local P; P := NumberTheory:-PrimeFactors(n); nops(P) = 3 and n = mul(P) end: A007304List := upto -> select(is_a, [seq(1..upto)]): # Peter Luschny, Apr 14 2025
Union[Flatten[Table[Prime[n]*Prime[m]*Prime[k], {k, 20}, {n, k+1, 20}, {m, n+1, 20}]]] Take[ Sort@ Flatten@ Table[ Prime@i Prime@j Prime@k, {i, 3, 21}, {j, 2, i - 1}, {k, j - 1}], 53] (* Robert G. Wilson v *) With[{upto=500},Sort[Select[Times@@@Subsets[Prime[Range[Ceiling[upto/6]]],{3}],#<=upto&]]] (* Harvey P. Dale, Jan 08 2015 *) Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]==3&] (* Gus Wiseman, Nov 05 2020 *)
for(n=1,1e4,if(bigomega(n)==3 && omega(n)==3,print1(n", "))) \\ Charles R Greathouse IV, Jun 10 2011
list(lim)=my(v=List(),t);forprime(p=2,(lim)^(1/3),forprime(q=p+1,sqrt(lim\p),t=p*q;forprime(r=q+1,lim\t,listput(v,t*r))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1,3), forprime(q=p+1, sqrtint(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); Set(v) \\ Charles R Greathouse IV, Jan 21 2025
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A007304(n): def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) kmin, kmax = 0,1 while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax # Chai Wah Wu, Aug 29 2024
def is_a(n): P = prime_divisors(n) return len(P) == 3 and prod(P) == n print([n for n in range(1, 439) if is_a(n)]) # Peter Luschny, Apr 14 2025
a084127 = a006530 . a001358 -- Reinhard Zumkeller, Nov 25 2012
FactorInteger[#][[-1, 1]]& /@ Select[Range[1000], PrimeOmega[#] == 2&] (* Jean-François Alcover, Nov 17 2021 *)
lista(nn) = {for (n=2, nn, if (bigomega(n)==2, f = factor(n); print1(f[length(f~),1], ", ")););} \\ Michel Marcus, Jun 05 2013
from math import isqrt from sympy import primepi, primerange, primefactors def A084127(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return max(primefactors(bisection(f,n,n))) # Chai Wah Wu, Oct 23 2024
s[n_] := Module[{f = FactorInteger[n], p, q}, If[Total[f[[;;,2]]] == 2, p=f[[1,1]]; q = n/p; 2^(q-1) * 3^(p-1) ,Nothing]]; Array[s, 100] (* Amiram Eldar, Apr 13 2024 *)
p*q*r*s = 210 is the 27th term in A014613; the smallest number with 210 divisors is 907200 = 2*2*2*2*2*2*3*3*3*3*5*5*7.
from math import prod, isqrt from sympy import primepi, primerange, integer_nthroot, isprime, divisors, prime def A061218(n): def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b))) def mult_factors(n): if isprime(n): return [(n,)] c = [] for d in divisors(n,generator=True): if 1Chai Wah Wu, Aug 17 2024
Comments