cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A137486 Numbers with 23 divisors.

Original entry on oeis.org

4194304, 31381059609, 2384185791015625, 3909821048582988049, 81402749386839761113321, 3211838877954855105157369, 1174562876521148458974062689, 13569980418174090907801371961
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
22nd powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Cf. A137485 (22 divs), A137487 (24 divs).

Programs

Formula

A000005(a(n))=23.
a(n)=A000040(n)^(23-1)=A000040(n)^(22). - Omar E. Pol, May 06 2008

A137484 Numbers with 21 divisors.

Original entry on oeis.org

576, 1600, 2916, 3136, 7744, 10816, 18225, 18496, 23104, 33856, 35721, 53824, 61504, 62500, 87616, 88209, 107584, 118336, 123201, 140625, 141376, 179776, 210681, 222784, 238144, 263169, 287296, 322624, 341056, 385641, 399424, 440896
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^20 or p^2*q^6 (A189990) where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A000005, A030513, A030638 (20 divisors), A137485 (22 divisors), A189990.

Programs

  • Mathematica
    Select[Range[450000],DivisorSigma[0,#]==21&] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
  • PARI
    is(n)=numdiv(n)==21 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A137484(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,8)[0])-primepi(integer_nthroot(x,20)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n)) = 21.
Sum_{n>=1} 1/a(n) = P(2)*P(6) - P(8) + P(20) = 0.00365945..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A166546 Natural numbers n such that d(n) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 16 2009

Keywords

Comments

Natural numbers n such that d(d(n)+1)= 2. - Giovanni Teofilatto, Oct 26 2009
The complement is the union of A001248, A030514, A030516, A030626, A030627, A030629, A030631, A030632, A030633 etc. - R. J. Mathar, Oct 26 2009

Crossrefs

Cf. A000005.
Cf. A073915. - R. J. Mathar, Oct 26 2009

Programs

  • Magma
    [n: n in [1..100] | IsPrime(NumberOfDivisors(n)+1)]; // Vincenzo Librandi, Jan 20 2019
  • Mathematica
    Select[Range@90, PrimeQ[DivisorSigma[0, #] + 1] &] (* Vincenzo Librandi, Jan 20 2019 *)
  • PARI
    isok(n) = isprime(numdiv(n)+1); \\ Michel Marcus, Jan 20 2019
    

Formula

{1} U A000040 U A030513 U A030515 U A030628 U A030630 U A030634 U A030636 U A137485 U A137491 U A137493 U ... . - R. J. Mathar, Oct 26 2009

A274366 Numbers n such that n and n+1 both have 22 divisors.

Original entry on oeis.org

2200933376, 3724751871, 4982377472, 5055007743, 5828903936, 6506195967, 9771369471, 12238318592, 13810439168, 15213325311, 15503492096, 15624424448, 17027310591, 20703583232, 22590198783, 23194860543, 27596727296, 28274019327, 30136306688, 30450801663
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A137485.

Programs

  • PARI
    is(n)=numdiv(n)==22 && numdiv(n+1)==22
    
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrtnint(lim\=1, 21), t=p^21; if(numdiv(t+1)==22, listput(v, t)); if(numdiv(t-1)==22, listput(v, t-1))); forprime(p=3, sqrtnint(lim\3, 10), my(p10=p^10); forprime(q=3, lim\p10, if(p==q, next); t=p10*q; if(numdiv(t+1)==22, listput(v, t)); if(numdiv(t-1)==22, listput(v, t-1)))); Set(v)

A065985 Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2001

Keywords

Comments

Numbers whose sorted prime signature (A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024

Crossrefs

Numbers with exactly 2*p divisors: A030513 (p=2), A030515 (p=3), A030628 \ {1} (p=5), A030632 (p=7), A137485 (p=11), A137489 (p=13), A175744 (p=17), A175747 (p=19).

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
  • PARI
    n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
    
  • PARI
    is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015
Showing 1-5 of 5 results.