cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A005179 Smallest number with exactly n divisors.

Original entry on oeis.org

1, 2, 4, 6, 16, 12, 64, 24, 36, 48, 1024, 60, 4096, 192, 144, 120, 65536, 180, 262144, 240, 576, 3072, 4194304, 360, 1296, 12288, 900, 960, 268435456, 720, 1073741824, 840, 9216, 196608, 5184, 1260, 68719476736, 786432, 36864, 1680, 1099511627776, 2880
Offset: 1

Views

Author

N. J. A. Sloane, David Singmaster

Keywords

Comments

A number n is called ordinary iff a(n)=A037019(n). Brown shows that the ordinary numbers have density 1 and all squarefree numbers are ordinary. See A072066 for the extraordinary or exceptional numbers. - M. F. Hasler, Oct 14 2014
All terms are in A025487. Therefore, a(n) is even for n > 1. - David A. Corneth, Jun 23 2017 [corrected by Charles R Greathouse IV, Jul 05 2023]

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 52.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 86.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 89.

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a005179 n = succ $ fromJust $ elemIndex n $ map a000005 [1..]
    -- Reinhard Zumkeller, Apr 01 2011
    
  • Maple
    A005179_list := proc(SearchLimit, ListLength)
    local L, m, i, d; m := 1;
    L := array(1..ListLength,[seq(0,i=1..ListLength)]);
    for i from 1 to SearchLimit while m <= ListLength do
      d := numtheory[tau](i);
      if d <= ListLength and 0 = L[d] then L[d] := i;
      m := m + 1; fi
    od:
    print(L) end: A005179_list(65537,18);
    # If a '0' appears in the list the search limit has to be increased. - Peter Luschny, Mar 09 2011
    # alternative
    # Construct list of ordered lists of factorizations of n with
    # minimum divisors mind.
    # Returns a list with A001055(n) entries if called with mind=2.
    # Example: print(ofact(10^3,2))
    ofact := proc(n,mind)
        local fcts,d,rec,r ;
        fcts := [] ;
        for d in numtheory[divisors](n) do
            if d >= mind then
                if d = n then
                    fcts := [op(fcts),[n]] ;
                else
                    # recursive call supposed one more factor fixed now
                    rec := procname(n/d,max(d,mind)) ;
                    for r in rec do
                        fcts := [op(fcts),[d,op(r)]] ;
                    end do:
                end if;
            end if;
        end do:
        return fcts ;
    end proc:
    A005179 := proc(n)
        local Lexp,a,eList,cand,maxxrt ;
        if n = 1 then
            return 1;
        end if;
        Lexp := ofact(n,2) ;
        a := 0 ;
        for eList in Lexp do
            maxxrt := ListTools[Reverse](eList) ;
            cand := mul( ithprime(i)^ ( op(i,maxxrt)-1),i=1..nops(maxxrt)) ;
            if a =0 or cand < a then
                a := cand ;
            end if;
        end do:
        a ;
    end proc:
    seq(A005179(n),n=1..40) ; # R. J. Mathar, Jun 06 2024
  • Mathematica
    a = Table[ 0, {43} ]; Do[ d = Length[ Divisors[ n ]]; If[ d < 44 && a[[ d ]] == 0, a[[ d]] = n], {n, 1, 1099511627776} ]; a
    (* Second program: *)
    Function[s, Map[Lookup[s, #] &, Range[First@ Complement[Range@ Max@ #, #] - 1]] &@ Keys@ s]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* Michael De Vlieger, Dec 11 2016, Version 10 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    a[n_] := Module[{e = f[n] - 1}, Min[Times @@@ ((Prime[Range[Length[#], 1, -1]]^#) & /@ e)]]; Array[a, 100] (* Amiram Eldar, Jul 26 2025 using the function f by T. D. Noe at A162247 *)
  • PARI
    (prodR(n,maxf)=my(dfs=divisors(n),a=[],r); for(i=2,#dfs, if( dfs[i]<=maxf, if(dfs[i]==n, a=concat(a,[[n]]), r=prodR(n/dfs[i],min(dfs[i],maxf)); for(j=1,#r, a=concat(a,[concat(dfs[i],r[j])]))))); a); A005179(n)=my(pf=prodR(n,n),a=1,b); for(i=1,#pf, b=prod(j=1,length(pf[i]),prime(j)^(pf[i][j]-1)); if(bA005179(n)", ")) \\ R. J. Mathar, May 26 2008, edited by M. F. Hasler, Oct 11 2014
    
  • Python
    from math import prod
    from sympy import isprime, divisors, prime
    def A005179(n):
        def mult_factors(n):
            if isprime(n):
                return [(n,)]
            c = []
            for d in divisors(n,generator=True):
                if 1Chai Wah Wu, Aug 17 2024

Formula

a(p) = 2^(p-1) for primes p: a(A000040(n)) = A061286(n); a(p^2) = 6^(p-1) for primes p: a(A001248(n)) = A061234(n); a(p*q) = 2^(q-1)*3^(p-1) for primes p<=q: a(A001358(n)) = A096932(n); a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes pA005179(A007304(n)) = A061299(n). - Reinhard Zumkeller, Jul 15 2004 [This can be continued to arbitrarily many distinct prime factors since no numbers in A072066 (called "exceptional" or "extraordinary") are squarefree. - Jianing Song, Jul 18 2025]
a(p^n) = (2*3...*p_n)^(p-1) for p > log p_n / log 2. Unpublished proof from Andrzej Schinzel. - Thomas Ordowski, Jul 22 2005
If p is a prime and n=p^k then a(p^k)=(2*3*...*s_k)^(p-1) where (s_k) is the numbers of the form q^(p^j) for every q and j>=0, according to Grost (1968), Theorem 4. For example, if p=2 then a(2^k) is the product of the first k members of the A050376 sequence: number of the form q^(2^j) for j>=0, according to Ramanujan (1915). - Thomas Ordowski, Aug 30 2005
a(2^k) = A037992(k). - Thomas Ordowski, Aug 30 2005
a(n) <= A037019(n) with equality except for n in A072066. - M. F. Hasler, Jun 15 2022

Extensions

More terms from David W. Wilson

A137492 Numbers with 29 divisors.

Original entry on oeis.org

268435456, 22876792454961, 37252902984619140625, 459986536544739960976801, 144209936106499234037676064081, 15502932802662396215269535105521, 28351092476867700887730107366063041
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
28th powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Programs

Formula

A000005(a(n))=29.
a(n)=A000040(n)^(29-1)=A000040(n)^(28). - Omar E. Pol, May 06 2008

A096932 Smallest number having exactly s divisors, where s is the n-th semiprime (A001358).

Original entry on oeis.org

6, 12, 36, 48, 192, 144, 576, 3072, 1296, 12288, 9216, 196608, 5184, 786432, 36864, 12582912, 46656, 589824, 82944, 2359296, 805306368, 3221225472, 331776, 37748736, 206158430208, 746496, 3298534883328, 5308416, 13194139533312, 2415919104, 2985984, 9663676416
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 15 2004

Keywords

Comments

This is to smallest integer for which the number of divisors is the n-th prime (A061286) as semiprimes (A001358) are to primes (A000040). - Jonathan Vos Post, Feb 03 2011

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, q}, If[Total[f[[;;,2]]] == 2, p=f[[1,1]]; q = n/p; 2^(q-1) * 3^(p-1) ,Nothing]]; Array[s, 100] (* Amiram Eldar, Apr 13 2024 *)

Formula

A000005(a(n)) = A001358(n) and A000005(m) <> A001358(n) for m < a(n).
a(n) = A005179(A001358(n)).
a(p*q) = 2^(q-1) * 3^(p-1) for primes p <= q.
a(A000040(i)*A000040(j)) = 2^(A084127(j)-1) * 3^(A084127(i)-1) for i <= j.

A196202 a(n) = 2^(prime(n)-1) mod prime(n)^2.

Original entry on oeis.org

2, 4, 16, 15, 56, 40, 222, 58, 392, 30, 187, 38, 944, 1076, 2069, 1909, 473, 2197, 671, 143, 4089, 1502, 3985, 535, 5530, 9293, 6078, 1392, 7304, 9380, 2287, 2228, 7262, 4171, 14305, 8457, 12875, 10922, 7850, 520, 8951, 26789, 9551, 20073, 34476, 26866
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 29 2011

Keywords

Comments

a(A049084(A001220(1))) = a(A049084(A001220(2))) = 1.

Examples

			A001220(1)=1093=A000040(183): a(183)=1, or a(A049084(A001220(1)))=1;
A001220(2)=3511=A000040(490): a(490)=1, or a(A049084(A001220(2)))=1.
		

References

  • N. G. W. H. Beeger, On a new case of the congruence 2^(p-1) ≡ 1 (p^2), Messenger of Mathematics 51, (1922), p. 149-150
  • Paulo Ribenboim, 1093 (Chap 8), in 'My Numbers, My Friends', Springer-Verlag 2000 NY, page 213ff.

Crossrefs

Cf. A061286.

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a196202 n = powerMod 2 (p - 1) (p ^ 2) where p = a000040 n
    -- Reinhard Zumkeller, May 18 2015
  • Maple
    seq(2 &^ (ithprime(n)-1) mod ithprime(n)^2, n=1..1000); # Robert Israel, Aug 03 2014
  • Mathematica
    PowerMod[2,#-1,#^2]&/@Prime[Range[50]] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    forprime(p=2, 1e2, print1(lift(Mod(2, p^2)^(p-1)), ", ")) \\ Felix Fröhlich, Aug 03 2014
    

A061299 Least number whose number of divisors is A007304(n) (the n-th number that is the product of 3 distinct primes).

Original entry on oeis.org

720, 2880, 46080, 25920, 184320, 2949120, 129600, 414720, 11796480, 1658880, 188743680, 3732480, 2073600, 26542080, 12079595520, 14929920, 48318382080, 106168320, 8294400, 3092376453120, 1698693120, 18662400, 238878720
Offset: 1

Views

Author

Labos Elemer, Jun 05 2001

Keywords

Comments

All terms are divisible by a(1) = 720, the first entry.
All terms [=a(j)], not only arguments [=j] have 3 distinct prime factors at exponents determined by the p,q,r factors of their arguments: a(pqr) = RPQ.

Examples

			For n = 5: A007304(5) = 78 = 2*3*13, A005179(78) = 184320 = (2^12)*(3^2)*(5^1) = a(5).
		

Crossrefs

Formula

a(n) = A005179(A007304(n)).
Min{x; A000005(x) = pqr} p, q, r are distinct primes. If k = pqr and p > q > r then A005179(k) = 2^(p-1)*3^(q-1)*5^(r-1).
From Reinhard Zumkeller, Jul 15 2004: (Start)
A000005(a(n)) = A007304(n).
A000005(m) != A007304(n) for m < a(n).
a(n) = A005179(A007304(n)).
a(p*m*q) = 2^(q-1) * 3^(m-1) * 5^(p-1) for primes p < m < q.
a(A000040(i)*A000040(j)*A000040(k)) = 2^(A084127(k)-1) * 3^(A084127(j)-1) * 5^(A084127(i)-1) for i < j < k. (End)

Extensions

Edited by N. J. A. Sloane, Apr 20 2007

A097743 Numbers of the form 3*2^(p - 1) - 1 where p is prime.

Original entry on oeis.org

5, 11, 47, 191, 3071, 12287, 196607, 786431, 12582911, 805306367, 3221225471, 206158430207, 3298534883327, 13194139533311, 211106232532991, 13510798882111487, 864691128455135231, 3458764513820540927
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 21 2004

Keywords

Examples

			p=2, 2^(2-1) + (2^2 - 1) = 5;
p=3, 2^(3-1) + (2^3 - 1) = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[3*2^(Prime[n] - 1) - 1, {n, 18}] (* Robert G. Wilson v, Sep 24 2004 *)
  • PARI
    a(n) = 3*2^(prime(n) - 1) - 1; \\ Michel Marcus, Nov 30 2017

Formula

a(n) = A001348(n) + A061286(n). - Iain Fox, Dec 08 2017

Extensions

Edited and extended by Robert G. Wilson v, Sep 24 2004

A137488 Numbers with 25 divisors.

Original entry on oeis.org

1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 16777216, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^24 (24th powers of A000040, subset of A010812) or p^4*q^4 (A189991), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Haskell
    a137488 n = a137488_list !! (n-1)
    a137488_list = m (map (^ 24) a000040_list) (map (^ 4) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    lst = {}; Do[If[DivisorSigma[0, n] == 25, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    Select[Range[5221*10^4],DivisorSigma[0,#]==25&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    is(n)=numdiv(n)==25 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A137488(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 25.
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 + P(24) = 0.000933328..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A061234 Smallest number with prime(n)^2 divisors where prime(n) is the n-th prime.

Original entry on oeis.org

6, 36, 1296, 46656, 60466176, 2176782336, 2821109907456, 101559956668416, 131621703842267136, 6140942214464815497216, 221073919720733357899776, 10314424798490535546171949056, 13367494538843734067838845976576
Offset: 1

Views

Author

Labos Elemer, Jun 01 2001

Keywords

Examples

			1296 = 2*2*2*2*3*3*3*3 is the smallest number with 25 divisors.
		

Crossrefs

Formula

a(n) = Min_{x : d(x) = A000005(x) = p(n)^2} = 6^(p(n)-1) because x = 2^(pp-1) > 2^(p-1)3^(p-1) holds if p > 1.
a(n) = A005179(A001248(n)). - Amiram Eldar, Jun 21 2024

A119523 Decimal expansion of 2^-1 + 2^-2 + 2^-4 + 2^-6 + 2^-10 + ..., where the exponents are 1 less than the primes.

Original entry on oeis.org

8, 2, 9, 3, 6, 5, 0, 1, 9, 7, 0, 2, 2, 2, 3, 3, 2, 0, 4, 9, 6, 2, 1, 9, 2, 4, 4, 3, 0, 8, 6, 1, 5, 4, 1, 6, 7, 3, 1, 5, 4, 8, 4, 7, 6, 2, 7, 5, 8, 3, 3, 9, 5, 5, 7, 3, 6, 4, 9, 0, 8, 2, 8, 9, 7, 7, 2, 8, 1, 9, 2, 1, 2, 3, 8, 7, 1, 4, 6, 6, 8, 3, 9, 2, 5, 8, 0, 0, 9, 6, 8, 5, 6, 9, 5, 1, 5, 5, 5, 8
Offset: 0

Views

Author

Roger L. Bagula, May 27 2006

Keywords

Comments

Decimal expansion of Sum_{k >= 1} A010051(k)/2^(k-1).
The primes have a larger measure than the composites as they dominate the lower integers.
The binary JIS function (as defined in A113829) for this constant (that we may call the van der Waerden-Ulam constant W) is given by the first differences of A000720, A000720(n+1) - A000720(n) = A010051(n+1) = JIS[W,2]. - Artur Jasinski, Jun 02 2008

Examples

			0.829365...
		

References

  • S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, 1960, page 54.

Crossrefs

Cf. A000720, A010051, A061286, A113829, A119524 (measure of composites).

Programs

  • Mathematica
    b = 0; Do[k = PrimePi[n + 1] - PrimePi[n]; b = b + k/2^n, {n, 1, 200}]; First[RealDigits[N[b, 200]]] (* Artur Jasinski, Jun 02 2008 *)
  • PARI
    s=0;forprime(p=2,1000,s+=1.>>p);2*s \\ Charles R Greathouse IV, Apr 05 2012

Formula

Equals 2*A051006 = 1/2 + 1/4 + 1/16 + 1/64 + 1/1024 +1/4096 + 1/65536 + ... (see A061286).
Equals Sum_{k>=1} pi(k)/2^k, where pi(k) = A000720(k). - Amiram Eldar, Aug 11 2020
Equals 1 - A119524. - Antonio Graciá Llorente, Jan 14 2024

Extensions

More terms from Peter Pein (petsie(AT)dordos.net), May 31 2006
Edited by N. J. A. Sloane, Nov 17 2006
Use of PrimePi in the first comment line corrected by R. J. Mathar, Oct 30 2010, Alonso Del Arte, Apr 05 2012
a(99) corrected by Sean A. Irvine, Jun 09 2024

A137485 Numbers with 22 divisors.

Original entry on oeis.org

3072, 5120, 7168, 11264, 13312, 17408, 19456, 23552, 29696, 31744, 37888, 41984, 44032, 48128, 54272, 60416, 62464, 68608, 72704, 74752, 80896, 84992, 91136, 99328, 103424, 105472, 109568, 111616, 115712, 118098, 130048, 134144, 140288
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^21 or p*q^10, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Maple
    A137485=proc(q) local n;
    for n from 1 to q do if tau(n)=22 then print(n); fi; od; end:
    A137485(10^10);
  • Mathematica
    Select[Range[200000],DivisorSigma[0,#]==22&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==22 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A137485(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**10) for p in primerange(integer_nthroot(x,10)[0]+1))+primepi(integer_nthroot(x,11)[0])-primepi(integer_nthroot(x,21)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=22.
Showing 1-10 of 33 results. Next