cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137486 Numbers with 23 divisors.

Original entry on oeis.org

4194304, 31381059609, 2384185791015625, 3909821048582988049, 81402749386839761113321, 3211838877954855105157369, 1174562876521148458974062689, 13569980418174090907801371961
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
22nd powers of primes. The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008

Crossrefs

Cf. A137485 (22 divs), A137487 (24 divs).

Programs

Formula

A000005(a(n))=23.
a(n)=A000040(n)^(23-1)=A000040(n)^(22). - Omar E. Pol, May 06 2008

A163569 Numbers of the form p^3*q^2*r where p, q and r are three distinct primes.

Original entry on oeis.org

360, 504, 540, 600, 756, 792, 936, 1176, 1188, 1224, 1350, 1368, 1400, 1404, 1500, 1656, 1836, 1960, 2052, 2088, 2200, 2232, 2250, 2484, 2600, 2646, 2664, 2904, 2952, 3096, 3132, 3348, 3384, 3400, 3500, 3800, 3816, 3996, 4056, 4116, 4248, 4312, 4392
Offset: 1

Views

Author

Keywords

Comments

There is no constraint on which of the three primes is the largest or smallest.

Examples

			360=2^3*3^2*5. 504=2^3*3^2*7. 1188=2^2*3^3*11.
		

Crossrefs

Subsequence of A137487. - R. J. Mathar, Aug 01 2009

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,3}; Select[Range[5000], f]
  • PARI
    list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/3), t1=p^3;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A163569(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//(p**3*q**2)) for p in primerange(integer_nthroot(x,3)[0]+1) for q in primerange(isqrt(x//p**3)+1))+sum(primepi(integer_nthroot(x//p**3,3)[0]) for p in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))-(primepi(integer_nthroot(x,6)[0])<<1)
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

A274362 Numbers n such that n and n+1 both have 24 divisors.

Original entry on oeis.org

5984, 11780, 20349, 22815, 24794, 26144, 27675, 29799, 31724, 33579, 33824, 34335, 34748, 36764, 37323, 37664, 38324, 38367, 38675, 38709, 40544, 41624, 42020, 44505, 44954, 47564, 47684, 48950, 50024, 51204, 52155, 52767, 53703, 53955, 54495, 55419
Offset: 1

Views

Author

Keywords

Comments

Goldston-Graham-Pintz-Yildirim prove that this sequence is infinite; in particular infinitely often a(k) = A189982(n) = A189982(n+1) - 1. In fact, their proof shows that at least one of the residue classes 355740n + 47480, 889350n + 118700, or 592900n + 79134 contains infinitely many terms of this sequence.

Crossrefs

Intersection of A005237 and A137487.

Programs

  • Mathematica
    Reap[For[k = 1, k < 56000, k++, If[DivisorSigma[0, k] == DivisorSigma[0, k + 1] == 24, Sow[k]]]][[2, 1]] (* Jean-François Alcover, Dec 16 2018 *)
  • PARI
    is(n)=numdiv(n)==24 && numdiv(n+1)==24
Showing 1-3 of 3 results.