cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016029 a(1) = a(2) = 1, a(2n + 1) = 2*a(2n) and a(2n) = 2*a(2n - 1) + (-1)^n.

Original entry on oeis.org

1, 1, 2, 5, 10, 19, 38, 77, 154, 307, 614, 1229, 2458, 4915, 9830, 19661, 39322, 78643, 157286, 314573, 629146, 1258291, 2516582, 5033165, 10066330, 20132659, 40265318, 80530637, 161061274, 322122547, 644245094
Offset: 1

Views

Author

Keywords

Comments

Row sums of Riordan array ((1+x^3)/(1-x^4), x/(1-x)). - Paul Barry, Oct 08 2007

Programs

  • Magma
    [Round(3*2^(n-1)/5): n in [1..41]]; // G. C. Greubel, Jul 08 2022
    
  • Mathematica
    LinearRecurrence[{2,-1,2}, {1,1,2}, 31] (* Ray Chandler, Sep 23 2015 *)
  • SageMath
    [(1/10)*(3*2^n + 2*i^n*(((n+1)%2) - 2*i*(n%2))) for n in (1..40)] # G. C. Greubel, Jul 08 2022

Formula

From Ralf Stephan, Jan 12 2005: (Start)
a(n) = (1/10)*(3*2^n + 3*(-1)^floor(n/2) - (-1)^floor((n+1)/2)).
G.f.: x*(1-x+x^2)/((1-2*x)*(1+x^2)). (End)
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3). - Paul Curtz, Dec 18 2007
From G. C. Greubel, Jul 08 2022: (Start)
a(n) = round( 3*2^(n-1)/5 ).
E.g.f.: (1/10)*(3*exp(2*x) + 4*sin(x) + 2*cos(x) - 5). (End)