cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016051 Numbers of the form 9*k+3 or 9*k+6.

Original entry on oeis.org

3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, 51, 57, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, 105, 111, 114, 120, 123, 129, 132, 138, 141, 147, 150, 156, 159, 165, 168, 174, 177, 183, 186, 192, 195, 201, 204, 210, 213, 219, 222, 228, 231, 237, 240
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A145204. - Reinhard Zumkeller, Oct 04 2008

Programs

  • Mathematica
    Select[Range[240], MatchQ[Mod[#, 9], 3|6]&] (* Jean-François Alcover, Sep 17 2013 *)
    LinearRecurrence[{1,1,-1},{3,6,12},60] (* or *) #+{3,6}&/@(9*Range[0,30])//Flatten (* Harvey P. Dale, Oct 04 2021 *)

Formula

a(n) = 3*A001651(n).
a(n+1) = a(n) + its digital root in decimal base.
From R. J. Mathar, Dec 16 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = 9*n/2 - 9/4 - 3*(-1)^n/4.
G.f: 3*x*(1+x+x^2)/((1+x)*(x-1)^2). (End)
a(n) = 9*(n-1) - a(n-1) (with a(1)=3). - Vincenzo Librandi, Nov 19 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(9*sqrt(3)). - Amiram Eldar, Sep 26 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = (2/sqrt(3)) * cos(Pi/18) (A199589).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3)) * sin(2*Pi/9). (End)