A016070 Numbers k such that k^2 contains exactly 2 different digits, excluding 10^m, 2*10^m, 3*10^m.
4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 26, 38, 88, 109, 173, 212, 235, 264, 3114, 81619
Offset: 1
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 109, p. 38, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, F24.
Links
- Michael Geißer, Theresa Körner, Sascha Kurz, and Anne Zahn, Squares with three digits, arXiv:2112.00444 [math.NT], 2021.
- Eric Weisstein's World of Mathematics, Square Number.
Programs
-
Mathematica
Select[Range[100000],Length[DeleteCases[DigitCount[#^2],0]]==2 && !Divisible[ #,10]&] (* Harvey P. Dale, Aug 15 2013 *) Reap[For[n = 4, n < 10^5, n++, id = IntegerDigits[n^2]; If[FreeQ[id, {, 0 ...}], If[Length[Union[id]] == 2, Sow[n]]]]][[2, 1]] (* _Jean-François Alcover, Sep 30 2016 *)
-
Python
from gmpy2 import is_square, isqrt from itertools import combinations, product A016070_list = [] for g in range(2,20): n = 2**g-1 for x in combinations('0123456789',2): if not x in [('0','1'), ('0','4'), ('0','9')]: for i,y in enumerate(product(x,repeat=g)): if i > 0 and i < n and y[0] != '0': z = int(''.join(y)) if is_square(z): A016070_list.append(isqrt(z)) A016070_list = sorted(A016070_list) # Chai Wah Wu, Nov 03 2014
Formula
A043537(a(n)) = 2. [Reinhard Zumkeller, Aug 05 2010]
Comments