cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016070 Numbers k such that k^2 contains exactly 2 different digits, excluding 10^m, 2*10^m, 3*10^m.

Original entry on oeis.org

4, 5, 6, 7, 8, 9, 11, 12, 15, 21, 22, 26, 38, 88, 109, 173, 212, 235, 264, 3114, 81619
Offset: 1

Views

Author

Keywords

Comments

No other terms below 3.16*10^20 (derived from A018884).

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 109, p. 38, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, F24.

Crossrefs

Programs

  • Mathematica
    Select[Range[100000],Length[DeleteCases[DigitCount[#^2],0]]==2 && !Divisible[ #,10]&] (* Harvey P. Dale, Aug 15 2013 *)
    Reap[For[n = 4, n < 10^5, n++, id = IntegerDigits[n^2]; If[FreeQ[id, {, 0 ...}], If[Length[Union[id]] == 2, Sow[n]]]]][[2, 1]] (* _Jean-François Alcover, Sep 30 2016 *)
  • Python
    from gmpy2 import is_square, isqrt
    from itertools import combinations, product
    A016070_list = []
    for g in range(2,20):
        n = 2**g-1
        for x in combinations('0123456789',2):
            if not x in [('0','1'), ('0','4'), ('0','9')]:
                for i,y in enumerate(product(x,repeat=g)):
                    if i > 0 and i < n and y[0] != '0':
                        z = int(''.join(y))
                        if is_square(z):
                            A016070_list.append(isqrt(z))
    A016070_list = sorted(A016070_list) # Chai Wah Wu, Nov 03 2014

Formula

A043537(a(n)) = 2. [Reinhard Zumkeller, Aug 05 2010]