cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016090 a(n) = 16^(5^n) mod 10^n: Automorphic numbers ending in digit 6, with repetitions.

Original entry on oeis.org

6, 76, 376, 9376, 9376, 109376, 7109376, 87109376, 787109376, 1787109376, 81787109376, 81787109376, 81787109376, 40081787109376, 740081787109376, 3740081787109376, 43740081787109376, 743740081787109376, 7743740081787109376, 7743740081787109376
Offset: 1

Views

Author

Keywords

Comments

Also called congruent numbers.
a(n)^2 == a(n) (mod 10^n), that is, a(n) is idempotent of Z[10^n].
Conjecture: For any m coprime to 10 and for any k, the density of n such that a(n) == k (mod m) is 1/m. - Eric M. Schmidt, Aug 01 2012
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and a(n) - 1 is divisible by 5^n. - Eric M. Schmidt, Aug 18 2012

Examples

			a(5) = 09376 because 09376^2 == 87909376 ends in 09376.
		

References

  • R. Cuculière, Jeux Mathématiques, in Pour la Science, No. 6 (1986), 10-15.
  • V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
  • R. A. Fairbairn, More on automorphic numbers, J. Rec. Math., 2 (No. 3, 1969), 170-174.
  • Jan Gullberg, Mathematics, From the Birth of Numbers, W. W. Norton & Co., NY, page 253-4.
  • Ya. I. Perelman, Algebra can be fun, pp. 97-98.
  • A. M. Robert, A Course in p-adic Analysis, Springer, 2000; see pp. 63, 419.
  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

A018248 gives the associated 10-adic number.
A003226 = {0, 1} union A007185 union (this sequence).

Programs

  • GAP
    List([1..22], n->PowerModInt(16,5^n,10^n)); # Muniru A Asiru, Mar 20 2018
  • Magma
    [Modexp(16, 5^n, 10^n): n in [1..30]]; // Bruno Berselli, Mar 13 2018
    
  • Maple
    [seq(16 &^ 5^n mod 10^n, n=1..22)]; # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Array[PowerMod[16, 5^#, 10^#] &, 18] (* Michael De Vlieger, Mar 13 2018 *)
  • PARI
    A016090(n)=lift(Mod(6,10^n)^5^(n-1)) \\ M. F. Hasler, Dec 05 2012, edited Jan 26 2020
    
  • Sage
    [crt(0, 1, 2^n, 5^n) for n in range(1, 1001)] # Eric M. Schmidt, Aug 18 2012
    

Formula

a(n) = 16^(5^n) mod 10^n.
a(n+1) == 2*a(n) - a(n)^2 (mod 10^(n+1)). - Eric M. Schmidt, Jul 28 2012
a(n) = 6^(5^n) mod 10^n. - Sylvie Gaudel, Feb 17 2018
a(2*n) = (3*a(n)^2 - 2*a(n)^3) mod 10^(2*n). - Sylvie Gaudel, Mar 12 2018
a(n) = 6^5^(n-1) mod 10^n. - M. F. Hasler, Jan 26 2020
a(n) = 2^(10^n) mod 10^n for n >= 2. - Peter Bala, Nov 10 2022

Extensions

Edited by David W. Wilson, Sep 26 2002
Definition corrected by M. F. Hasler, Dec 05 2012