cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A016115 Number of prime palindromes with n digits.

Original entry on oeis.org

4, 1, 15, 0, 93, 0, 668, 0, 5172, 0, 42042, 0, 353701, 0, 3036643, 0, 27045226, 0, 239093865, 0, 2158090933, 0, 19742800564, 0, 180815391365, 0
Offset: 1

Views

Author

Keywords

Comments

Every palindrome with an even number of digits is divisible by 11 and therefore is composite (not prime). Hence there is only one palindromic prime with an even number of digits, namely 11 itself. - Martin Renner, Apr 15 2006

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 113.

Crossrefs

Cf. A002113 (palindromes), A002385 (palindromic primes), A040025 (bisection), A050251 (partial sums).

Programs

  • Maple
    # A016115 Gets numbers of base-10 palindromic primes with exactly d digits, 1 <= d <= 13 (say), in the list "lis"
    lis:=[4,1];
    for d from 3 to 13 do
    if d::even then
        lis:=[op(lis),0];
    else
        m:= (d-1)/2:
        Res2 := [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]:
        ct:=0; for x in Res2 do if isprime(x) then ct:=ct+1; fi: od:
        lis:=[op(lis),ct];
    fi:
    lprint(d,lis);
    od:
    lis; # N. J. A. Sloane, Oct 18 2015
  • Mathematica
    A016115[n_] := Module[{i}, If[EvenQ[n] && n > 2, Return[0]]; Return[Length[Select[Range[10^(n - 1), 10^n - 1], # == IntegerReverse[#] && PrimeQ[#] &]]]];
    Table[A016115[n], {n, 6}] (* Robert Price, May 25 2019 *)
    (* -OR-  A less straightforward implementation, but more efficient in that the palindromes are constructed instead of testing every number in the range. *)
    A016115[n_] := Module[{c, f, t0, t1},
       If[n == 2, Return[1]];
       If[EvenQ[n], Return[0]];
       c = 0; t0 = 10^((n - 1)/2); t1 = t0*10;
       For[f = t0, f < t1, f++,
        If[n != 1 && MemberQ[{2,4,5,6,8}, Floor[f/t0]], f = f + t0 - 1; Continue[]];
        If[PrimeQ[f*t0 + IntegerReverse[Floor[f/10]]], c++]]; Return[c]];
    Table[A016115[n], {n, 1, 12}] (* Robert Price, May 25 2019 *)
  • PARI
    apply( {A016115(n)=if(n%2, (n<3)+vecsum([sum(k=i, i+n, (k*2-k%10)%3 && isprime(k*n+fromdigits(Vecrev(digits(k\10))))) | i<-[1, 3, 7, 9]*n=10^(n\2)]), n==2)}, [1..12]) \\ M. F. Hasler, Dec 19 2024
  • Python
    from sympy import isprime
    from itertools import product
    def pals(d, base=10): # all d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]: yield int(left + mid + right)
    def a(n): return int(n==2) if n%2 == 0 else sum(isprime(p) for p in pals(n))
    print([a(n) for n in range(1, 13)]) # Michael S. Branicky, Jun 23 2021
    

Formula

a(2n) = 0 for n > 1. - Chai Wah Wu, Nov 21 2021

Extensions

Corrected and extended by Patrick De Geest, Jun 15 1998
a(17) = 27045226 was found by Martin Eibl (M.EIBL(AT)LINK-R.de) and independently by Warut Roonguthai and later confirmed by Carlos Rivera, in June 1998.
a(19) from Shyam Sunder Gupta, Feb 12 2006
a(21)-a(22) from Shyam Sunder Gupta, Mar 13 2009
a(23)-a(24) from Shyam Sunder Gupta, Oct 05 2013
a(25)-a(26) from Shyam Sunder Gupta, Dec 19 2024