cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A080248 Stirling-like number triangle defined by sequence A000217.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 10, 1, 1, 40, 73, 20, 1, 1, 121, 478, 273, 35, 1, 1, 364, 2989, 3208, 798, 56, 1, 1, 1093, 18298, 35069, 15178, 1974, 84, 1, 1, 3280, 110881, 368988, 262739, 56632, 4326, 120, 1, 1, 9841, 668566, 3800761, 4310073, 1452011, 177760
Offset: 0

Views

Author

Paul Barry, Feb 17 2003

Keywords

Comments

Columns include A003462, A016211, A021514. The defining sequence A000217(n) = C(n+1,2) is the sequence of partial sums of the sequence (0,1,2,3,4,...) which defines the Stirling numbers of the second kind A008277.
n-th row = M^n * [1,0,0,0,...], where M = an infinite lower triangular matrix with (1, 3, 6, ...) in the main diagonal and (1, 1, 1, ...) in the subdiagonal. - Gary W. Adamson, Apr 13 2009
Row sums = A124373 starting (1, 2, 6, 25, 135, ...). - Gary W. Adamson, Jul 11 2011

Examples

			Rows are
  {1},
  {1,  1},
  {1,  4,  1},
  {1, 13, 10,  1},
  {1, 40, 73, 20, 1},
  ...
For example, 73 = 13 + 6*10, 20 = 10 + 10*1.
		

Crossrefs

Programs

  • Maple
    gf  := k -> 1/mul(1 - x*j*(j-1)/2, j=0..k+2):
    ser := k -> series(gf(k), x, 16):
    T := (n, k) -> coeff(ser(k), x, n-k):
    seq(print(seq(T(n, k), k=0..n)), n=0..8); # Peter Luschny, Aug 29 2020
  • Mathematica
    max = 10; t[n_, n_] = n*(n+1)/2; t[n_, k_] /; k == n-1 = 1; t[, ] = 0; m = Table[t[n, k], {n, 1, max}, {k, 1, max}]; row[n_] := MatrixPower[m, n][[All, 1]]; Table[Take[row[n], n+1], {n, 0, max-1}] // Flatten (* Jean-François Alcover, Jun 25 2013, after Gary W. Adamson *)
  • PARI
    {T(n, k) = local(s); if( k<0 || k>n, 0, forvec(v = vector(n-k, i, [0, k]), s += prod(i=1, n-k, v[i] * (v[i] + 1) / 2), 1)); s}; /* Michael Somos, Feb 06 2004 */

Formula

Columns are generated by 1/Product_{k=1..n+1} (1 - C(k + 1, 2)*x). [In other words:
T(n, k) = [x^(n-k)] 1/Product_{j=0..k+2}(1 - x*binomial(j, 2)).]
T(n, k) = (k*(k+1)/2) * T(n-1,k) + T(n-1,k-1), T(n,n)=1. - Vladimir Kruchinin, Aug 25 2020
T(n,k) = (Sum_{i=0..k} (-1)^(k-i) * (2*i + 3) * binomial(2*k + 3,k-i) * ((i+1) * (i+2) / 2)^(n+1)) * 2^(k+1) / (2*k + 3)! for 0 <= k <= n. - Werner Schulte, Oct 29 2020
The polynomials p(n,x) = Sum_{k=0..n} T(n,k) * (k!*(k+1)!/2^k) * x^(k+2) satisfy for n >= 0 the equations p(n+1,x) = p(1,x) * p''(n,x) / 2 and p(n,-1) = 0^n when p'' is the second derivative of p. - Werner Schulte, Dec 15 2020

A226941 Expansion of 1/((1-x)(1-3x)(1-6x)(1-10x)(1-15x)).

Original entry on oeis.org

1, 35, 798, 15178, 262739, 4310073, 68451856, 1065454016, 16372593237, 249520885471, 3782278181474, 57129692163414, 860905800344695, 12953222527379429, 194694881199600852, 2924389779305546572, 43905519073297744313, 658979550560400579147, 9888661146758667705190
Offset: 1

Views

Author

Yahia Kahloune, Jun 23 2013

Keywords

Comments

Note that the denominator has 5 triangular numbers: 1, 3, 6, 10, and 15.

Crossrefs

Column k = 4 of A080248. Cf. A003462, A016211, A021514.

Formula

a(n) = (15^(n+4) - 6*10^(n+4) + 14*6^(n+4) - 15*3^(n+4) + 6)/7560.
a(n) = 35*a(n-1) - 427*a(n-2) + 2193*a(n-3) - 4500*a(n-4) + 2700*a(n-5) for n > 5. - Chai Wah Wu, Aug 10 2020
Showing 1-2 of 2 results.