cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A071951 Triangle of Legendre-Stirling numbers of the second kind T(n,j), n >= 1, 1 <= j <= n, read by rows.

Original entry on oeis.org

1, 2, 1, 4, 8, 1, 8, 52, 20, 1, 16, 320, 292, 40, 1, 32, 1936, 3824, 1092, 70, 1, 64, 11648, 47824, 25664, 3192, 112, 1, 128, 69952, 585536, 561104, 121424, 7896, 168, 1, 256, 419840, 7096384, 11807616, 4203824, 453056, 17304, 240, 1, 512, 2519296, 85576448, 243248704, 137922336, 23232176, 1422080, 34584, 330, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2002

Keywords

Comments

Removing a factor of 2^m from the m-th subdiagonal (the main diagonal corresponds to m = 0) gives the triangle A080248. - Peter Bala, Oct 15 2023

Examples

			The triangle begins:
n\j   1      2       3        4       5      6     7   8 9 ...
1:    1
2:    2      1
3:    4      8       1
4:    8     52      20        1
5:   16    320     292       40       1
6:   32   1936    3824     1092      70      1
7:   64  11648   47824    25664    3192    112     1
8:  128  69952  585536   561104  121424   7896   168   1
9:  256 419840 7096384 11807616 4203824 453056 17304 240 1
...
Row 10: 512 2519296 85576448 243248704 137922336 23232176 1422080 34584 330 1. Reformatted by _Wolfdieter Lang_, Apr 10 2013
		

Crossrefs

Diagonals give A007290, A000079, A016129, A016309.
The column sequences are A000079 (powers of 2), A016129, A016309, A071952, A089274, A089277.

Programs

  • Magma
    [[(&+[(-1)^(r+j)*(2*r+1)*(r^2+r)^n/(Factorial(r+j+1)*Factorial(j-r)): r in [1..j]]): j in [1..n]]: n in [1..12]]; // G. C. Greubel, Mar 16 2019
    
  • Maple
    N:= 20: # to get the first N rows, flattened
    for j from 1 to N do S[j]:= series(x^j/mul(1-r*(r+1)*x, r=1..j), x, N+1) od:
    seq(seq(coeff(S[j],x,i),j=1..i),i=1..N); # Robert Israel, Dec 03 2015
    # alternative
    A071951 := proc(n,k)
        option remember;
        if k =0 then
            if n = 0 then
                1;
            else
                0;
            end if;
        elif n = 0 then
            if k =0 then
                1;
            else
                0;
            end if;
        else
            procname(n-1,k-1)+k*(k+1)*procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Jun 30 2018
  • Mathematica
    Flatten[ Table[ Sum[(-1)^{r + j}(2r + 1)(r^2 + r)^n/((r + j + 1)!(j - r)!), {r, j}], {n, 10}, {j, n}]]
  • PARI
    {T(n, k) = sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! )} /* Michael Somos, Feb 25 2012 */
    
  • Sage
    [[sum( (-1)^(r+j)*(2*r+1)*(r^2+r)^n/(factorial(r+j+1)*factorial(j-r)) for r in (1..j)) for j in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 16 2019

Formula

T(n, j) = Sum_{r=1..j} (-1)^(r+j)*(2*r+1)*(r^2+r)^n/((r+j+1)!*(j-r)!).
G.f. for j-th column (without leading zeros): 1/Product_{r=1..j} (1 - r*(r+1)*x), j >= 1. From eq.(4.5) of the Everitt et al. paper.
A135921(n+1) = row sums. - Michael Somos, Feb 25 2012
Sum_{n=j..m} binomial(m,n)*T(n,j)*4^(n-j) = A160562(m,j) for 1 <= j <= m. - Werner Schulte, Dec 03 2015

A124373 O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - k*(k+1)/2*x).

Original entry on oeis.org

1, 1, 2, 6, 25, 135, 909, 7417, 71698, 806968, 10427825, 152915697, 2519879761, 46276398129, 940296067422, 21007099850230, 513172107841525, 13640345170943527, 392780078386164389, 12204609567437300313, 407757149671568266678, 14600807659376773500696
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2006

Keywords

Comments

Starting (1, 2, 6, 25, ...) = row sums of triangle A080248. - Gary W. Adamson, Jul 11 2011

Examples

			Also generated by iterated binomial transforms in the following way:
  [1,2,6,25,135,909,7417,71698,...]  = binomial([1,1,3,12,64,433,3567,...]);
  [1,3,12,64,433,3567,34905,...]     = binomial^2([1,1,4,20,129,1045,...]);
  [1,4,20,129,1045,10209,117069,...] = binomial^3([1,1,5,30,226,2121,...]);
  [1,5,30,226,2121,23919,314605,...] = binomial^4([1,1,6,42,361,3835,...]);
  [1,6,42,361,3835,48885,724569,...] = binomial^5([1,1,7,56,540,6385,...]);
  [1,7,56,540,6385,90519,1490457,..] = binomial^6([1,1,8,72,769,9993,...]);
etc.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m*(m+1)/2 +b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 10 2019
  • Mathematica
    b[n_, m_] := b[n, m] = If[n == 0, 1, b[n-1, m] m(m+1)/2 + b[n-1, m+1]];
    a[n_] := b[n, 0];
    a /@ Range[0, 23] (* Jean-François Alcover, Nov 02 2020, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff(sum(k=0,n,x^k/prod(j=0,k,1-j*(j+1)/2*x+x*O(x^n))),n)

Formula

O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-6x)) + x^3/((1-x)*(1-3x)*(1-6x)*(1-10x)) + ...
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-(k+1)*(k+2)*x/2)/(1-x/(x-1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2013

A080249 Stirling-like number triangle defined by the sequence A000292=C(n+3,3).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 21, 15, 1, 1, 85, 171, 35, 1, 1, 341, 1795, 871, 70, 1, 1, 1365, 18291, 19215, 3321, 126, 1, 1, 5461, 184275, 402591, 135450, 10377, 210, 1, 1, 21845, 1848211, 8236095, 5143341, 716562, 28017, 330, 1, 1, 87381, 18503955, 166570111, 188253030, 45270813, 3069990, 67617, 495, 1
Offset: 0

Views

Author

Paul Barry, Feb 17 2003

Keywords

Comments

Columns include A002450, A016225. The defining sequence A000292=C(n+3,3) is the sequence of partial sums of the defining sequence for number triangle A080248.

Examples

			Triangle begins:
1;
1,    1;
1,    5,      1;
1,   21,     15,      1;
1,   85,    171,     35,      1;
1,  341,   1795,    871,     70,     1;
1, 1365,  18291,  19215,   3321,   126,   1;
1, 5461, 184275, 402591, 135450, 10377, 210, 1;
For example, 171 = 21+10*15, 35 = 15+20*1.
		

Crossrefs

Formula

T(n,k) = T(n-1,k-1) + A000292(k)*T(n-1,k). Columns are generated by 1/product{k=0..n, 1-C(k+3,3)*x}.

A226941 Expansion of 1/((1-x)(1-3x)(1-6x)(1-10x)(1-15x)).

Original entry on oeis.org

1, 35, 798, 15178, 262739, 4310073, 68451856, 1065454016, 16372593237, 249520885471, 3782278181474, 57129692163414, 860905800344695, 12953222527379429, 194694881199600852, 2924389779305546572, 43905519073297744313, 658979550560400579147, 9888661146758667705190
Offset: 1

Views

Author

Yahia Kahloune, Jun 23 2013

Keywords

Comments

Note that the denominator has 5 triangular numbers: 1, 3, 6, 10, and 15.

Crossrefs

Column k = 4 of A080248. Cf. A003462, A016211, A021514.

Formula

a(n) = (15^(n+4) - 6*10^(n+4) + 14*6^(n+4) - 15*3^(n+4) + 6)/7560.
a(n) = 35*a(n-1) - 427*a(n-2) + 2193*a(n-3) - 4500*a(n-4) + 2700*a(n-5) for n > 5. - Chai Wah Wu, Aug 10 2020
Showing 1-4 of 4 results.