A089504
A generalization of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 6, 1, 36, 30, 1, 216, 756, 90, 1, 1296, 18360, 6156, 210, 1, 7776, 441936, 387720, 31356, 420, 1, 46656, 10614240, 23705136, 4150440, 119556, 756, 1, 279936, 254788416, 1432922400, 521757936, 29257200, 373572, 1260, 1, 1679616
Offset: 1
[1]; [6,1]; [36,30,1]; [216,756,90,1]; ...
a(3,2) = 30 = ((-1)*(3*2*1)^1 + 4*(4*3*2)^1)/3.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- W. Lang, First 8 rows.
Cf.
A071951 (Legendre-Stirling, (2, 2) case).
-
max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 2, 3]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
A089278
Coefficient triangle for computation of column numbers of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, -1, 3, 1, -15, 24, -7, 405, -2268, 2500, 2, -405, 6048, -20000, 16875, -11, 7425, -266112, 2000000, -4640625, 3176523, 143, -312741, 25474176, -390000000, 1879453125, -3344878719, 1927561216, -143, 995085, -178319232, 5250000000, -46986328125, 163899057231, -236126248960
Offset: 1
[1]; [ -1,3]; [1,-15,24]; [ -7,405,-2268,2500]; ...
Sequence A071951(n+3,3)= A016309(n)= [1,20,292,...] has a(n)=
(1*(1*2)^n - 15*(2*3)^n + 24*(3*4)^n)/10.
A089500
Denominators for computation of column sequences of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 2, 10, 630, 2520, 277200, 97297200, 3405402000, 463134672000, 475176173472000, 16631166071520000, 4207685016094560000, 3786916514485104000000, 98459829376612704000000
Offset: 1
A071952
Diagonal T(n, 4) of triangle in A071951.
Original entry on oeis.org
1, 40, 1092, 25664, 561104, 11807616, 243248704, 4950550528, 100040447232, 2013177300992, 40412056994816, 810023815790592, 16221871691714560, 324694197936160768, 6496965245491888128, 129976281056339296256
Offset: 4
- G. C. Greubel, Table of n, a(n) for n = 4..250
- W. N. Everitt, L. L. Littlejohn and R. Wellman, Legendre polynomials, Legendre-Stirling numbers and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math. 148, 2002, 213-238.
- L. L. Littlejohn and R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.
- Index entries for linear recurrences with constant coefficients, signature (40,-508,2304,-2880).
-
List([4..20], n-> 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315); # G. C. Greubel, Mar 16 2019
-
[2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315: n in [4..20]]; // G. C. Greubel, Mar 16 2019
-
Flatten[ Table[ Sum[(-1)^{r + 4}(2r + 1)(r^2 + r)^n/((r + 5)!(4 - r)!), {r, 1, 4}], {n, 4, 20}]]
LinearRecurrence[{40, -508, 2304, -2880}, {1, 40, 1092, 25664}, 20] (* G. C. Greubel, Mar 16 2019 *)
-
{a(n) = 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315}; \\ G. C. Greubel, Mar 16 2019
-
[2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315 for n in (4..20)] # G. C. Greubel, Mar 16 2019
A090215
A generalization of triangles A071951 (Legendre-Stirling) and A089504.
Original entry on oeis.org
1, 24, 1, 576, 144, 1, 13824, 17856, 504, 1, 331776, 2156544, 199296, 1344, 1, 7962624, 259117056, 73903104, 1328256, 3024, 1, 191102976, 31102009344, 26864234496, 1189638144, 6408576, 6048, 1, 4586471424, 3732432224256, 9702226427904, 1026160275456, 11956045824, 24697728, 11088, 1
Offset: 1
[1]; [24,1]; [576,144,1]; [13824,17856,504,1]; ...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- Wolfdieter Lang, First 8 rows.
The column sequences (without leading zeros) are
A009968 (powers of 24), etc.
-
max = 10; f[m_] := 1/Product[1-FactorialPower[r+3, 4]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max-m+1), x]; a[n_, m_] := col[m][[n-m+1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)
More terms coming from a-file added by
Michel Marcus, Feb 08 2023
A089274
Fifth column of the Legendre-Stirling triangle A071951.
Original entry on oeis.org
1, 70, 3192, 121424, 4203824, 137922336, 4380918784, 136378114048, 4191383868672, 127754693361152, 3873052857829376, 117001609550671872, 3526270158211870720, 106112798944292282368, 3189880933574260359168
Offset: 0
-
[(16875*(6*5)^n - 20000*(5*4)^n + 6048*(4*3)^n - 405*(3*2)^n + 2*(2*1)^n)/2520: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
-
Table[2^(n-3)*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)/315, {n,0,30}] (* G. C. Greubel, Nov 10 2024 *)
-
def A089274(n): return 2^n*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)//2520
[A089274(n) for n in range(31)] # G. C. Greubel, Nov 10 2024
A090217
A generalization of triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 120, 1, 14400, 840, 1, 1728000, 619200, 3360, 1, 207360000, 447552000, 9086400, 10080, 1, 24883200000, 322444800000, 23345280000, 76824000, 25200, 1, 2985984000000, 232185139200000, 59152550400000, 539602560000, 457848000
Offset: 1
Triangle starts:
[1];
[120,1];
[14400,840,1];
[1728000,619200,3360,1];
...
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, arXiv preprint arXiv:1302.4694 [math.CO], 2013.
- R. B. Corcino, K. J. M. Gonzales, M. J. C. Loquias and E. L. Tan, Dually weighted Stirling-type sequences, Europ. J. Combin., 43, 2015, 55-67.
- W. Lang, First 5 rows.
The column sequences (without leading zeros) are powers of 120, etc.
-
max = 10; f[m_] := 1/Product[1 - FactorialPower[r + 4, 5]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max - m + 1), x]; a[n_, m_] := col[m][[n - m + 1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)
A071953
Diagonal T(n,n-2) of triangle in A071951.
Original entry on oeis.org
4, 52, 292, 1092, 3192, 7896, 17304, 34584, 64284, 112684, 188188, 301756, 467376, 702576, 1028976, 1472880, 2065908, 2845668, 3856468, 5150068, 6786472, 8834760, 11373960, 14493960, 18296460, 22895964, 28420812, 35014252
Offset: 3
- G. C. Greubel, Table of n, a(n) for n = 3..5000
- W. N. Everitt, L. L. Littlejohn and R. Wellman, Legendre polynomials, Legendre-Stirling numbers and the left-definite spectral analysis of the Legendre differential expression, J. Comput. Appl. Math. 148, 2002, 213-238.
- L. L. Littlejohn and R. Wellman, A general left-definite theory for certain self-adjoint operators with applications to differential equations, J. Differential Equations, 181(2), 2002, 280-339.
- Index entries for linear recurrences with constant coefficients, signature (7, -21, 35, -35, 21, -7, 1).
-
List([3..30], n-> (n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90); # G. C. Greubel, Mar 16 2019
-
[(n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90: n in [3..30]]; // G. C. Greubel, Mar 16 2019
-
Flatten[ Table[ Sum[(-1)^{r + n - 2}(2r + 1)(r^2 + r)^n/((r + n - 1)!(n - 2 - r)!), {r, 1, n - 2}], {n, 3, 34}]]
Table[(n-2)(n-1)n(n+1)(5n^2-11n+3)/90,{n,3,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{4,52,292,1092,3192, 7896,17304}, 30] (* Harvey P. Dale, Jul 03 2011 *)
-
{a(n) = (n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90}; \\ G. C. Greubel, Mar 16 2019
-
[(n-2)*(n-1)*n*(n+1)*(5*n^2 - 11*n + 3)/90 for n in (3..30)] # G. C. Greubel, Mar 16 2019
A089277
Sixth column of the triangle A071951 (Legendre-Stirling).
Original entry on oeis.org
1, 112, 7896, 453056, 23232176, 1113673728, 51155215360, 2284897159168, 100157064553728, 4334351404617728, 185915811851773952, 7925465707325177856, 336395829865869340672, 14234737653310804590592
Offset: 0
A372343
a(n) is the permanent of the n X n matrix whose element (i,j) equals PS(i+2,j), where PS(r,c) is the Legendre-Stirling number of the second kind (A071951).
Original entry on oeis.org
1, 12, 2448, 2900160, 3335369728, 16355507060736, 202873109257748480, 5520786912662854893568, 304515605038514679874846720, 31568014831906551177163996921856, 5785425274398818300907155436515360768, 1783302045417843100606023721285336961122304, 886715046570481808433485979311322483302619676672
Offset: 0
- G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
-
PS[n_,k_]:=Sum[(-1)^(r+k)(2r+1)(r^2+r)^n/((r+k+1)!(k-r)!),{r,0,k}]; a[0]:=1; a[n_]:=Permanent[Table[PS[i+2,j],{i,n},{j,n}]]; Array[a,13,0]
Showing 1-10 of 22 results.
Comments