cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A016129 Expansion of 1/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 8, 52, 320, 1936, 11648, 69952, 419840, 2519296, 15116288, 90698752, 544194560, 3265171456, 19591036928, 117546237952, 705277460480, 4231664828416, 25389989101568, 152339934871552, 914039609753600, 5484237659570176, 32905425959518208, 197432555761303552
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A100851.
Sequences with gf 1/((1-n*x)*(1-6*x)): A000400 (n=0), A003464 (n=1), this sequence (n=2), A016137 (n=3), A016149 (n=4), A005062 (n=5), A053469 (n=6), A016169 (n=7), A016170 (n=8), A016172 (n=9), A016173 (n=10), A016174 (n=11), A016175 (n=12).

Programs

Formula

a(n) = A071951(n+2, 2) = 9*(2*3)^(n-1) - (2*1)^(n-1) = (2^(n-1))*(3^(n+1)-1), n>=0. - Wolfdieter Lang, Nov 07 2003
From Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005: (Start)
G.f.: 1/((1-2*x)*(1-6*x)).
E.g.f.: (-exp(2*x) + 3*exp(6*x))/2.
a(n) = (6^(n+1) - 2^(n+1))/4. (End)
a(n)^2 = A144843(n+1). - Philippe Deléham, Nov 26 2008
a(n) = 8*a(n-1) - 12*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A071951 Triangle of Legendre-Stirling numbers of the second kind T(n,j), n >= 1, 1 <= j <= n, read by rows.

Original entry on oeis.org

1, 2, 1, 4, 8, 1, 8, 52, 20, 1, 16, 320, 292, 40, 1, 32, 1936, 3824, 1092, 70, 1, 64, 11648, 47824, 25664, 3192, 112, 1, 128, 69952, 585536, 561104, 121424, 7896, 168, 1, 256, 419840, 7096384, 11807616, 4203824, 453056, 17304, 240, 1, 512, 2519296, 85576448, 243248704, 137922336, 23232176, 1422080, 34584, 330, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2002

Keywords

Comments

Removing a factor of 2^m from the m-th subdiagonal (the main diagonal corresponds to m = 0) gives the triangle A080248. - Peter Bala, Oct 15 2023

Examples

			The triangle begins:
n\j   1      2       3        4       5      6     7   8 9 ...
1:    1
2:    2      1
3:    4      8       1
4:    8     52      20        1
5:   16    320     292       40       1
6:   32   1936    3824     1092      70      1
7:   64  11648   47824    25664    3192    112     1
8:  128  69952  585536   561104  121424   7896   168   1
9:  256 419840 7096384 11807616 4203824 453056 17304 240 1
...
Row 10: 512 2519296 85576448 243248704 137922336 23232176 1422080 34584 330 1. Reformatted by _Wolfdieter Lang_, Apr 10 2013
		

Crossrefs

Diagonals give A007290, A000079, A016129, A016309.
The column sequences are A000079 (powers of 2), A016129, A016309, A071952, A089274, A089277.

Programs

  • Magma
    [[(&+[(-1)^(r+j)*(2*r+1)*(r^2+r)^n/(Factorial(r+j+1)*Factorial(j-r)): r in [1..j]]): j in [1..n]]: n in [1..12]]; // G. C. Greubel, Mar 16 2019
    
  • Maple
    N:= 20: # to get the first N rows, flattened
    for j from 1 to N do S[j]:= series(x^j/mul(1-r*(r+1)*x, r=1..j), x, N+1) od:
    seq(seq(coeff(S[j],x,i),j=1..i),i=1..N); # Robert Israel, Dec 03 2015
    # alternative
    A071951 := proc(n,k)
        option remember;
        if k =0 then
            if n = 0 then
                1;
            else
                0;
            end if;
        elif n = 0 then
            if k =0 then
                1;
            else
                0;
            end if;
        else
            procname(n-1,k-1)+k*(k+1)*procname(n-1,k) ;
        end if;
    end proc: # R. J. Mathar, Jun 30 2018
  • Mathematica
    Flatten[ Table[ Sum[(-1)^{r + j}(2r + 1)(r^2 + r)^n/((r + j + 1)!(j - r)!), {r, j}], {n, 10}, {j, n}]]
  • PARI
    {T(n, k) = sum( i=0, k, (-1)^(i+k) * (2*i + 1) * (i*i + i)^n / (k-i)! / (k+i+1)! )} /* Michael Somos, Feb 25 2012 */
    
  • Sage
    [[sum( (-1)^(r+j)*(2*r+1)*(r^2+r)^n/(factorial(r+j+1)*factorial(j-r)) for r in (1..j)) for j in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 16 2019

Formula

T(n, j) = Sum_{r=1..j} (-1)^(r+j)*(2*r+1)*(r^2+r)^n/((r+j+1)!*(j-r)!).
G.f. for j-th column (without leading zeros): 1/Product_{r=1..j} (1 - r*(r+1)*x), j >= 1. From eq.(4.5) of the Everitt et al. paper.
A135921(n+1) = row sums. - Michael Somos, Feb 25 2012
Sum_{n=j..m} binomial(m,n)*T(n,j)*4^(n-j) = A160562(m,j) for 1 <= j <= m. - Werner Schulte, Dec 03 2015

A089278 Coefficient triangle for computation of column numbers of triangle A071951 (Legendre-Stirling).

Original entry on oeis.org

1, -1, 3, 1, -15, 24, -7, 405, -2268, 2500, 2, -405, 6048, -20000, 16875, -11, 7425, -266112, 2000000, -4640625, 3176523, 143, -312741, 25474176, -390000000, 1879453125, -3344878719, 1927561216, -143, 995085, -178319232, 5250000000, -46986328125, 163899057231, -236126248960
Offset: 1

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The k-th column sequence A071951(n+k,k), n>=0, is sum(a(k,p)*(p*(p+1))^n,p=1..k)/A089500(k), k>=1.

Examples

			[1]; [ -1,3]; [1,-15,24]; [ -7,405,-2268,2500]; ...
Sequence A071951(n+3,3)= A016309(n)= [1,20,292,...] has a(n)=
(1*(1*2)^n - 15*(2*3)^n + 24*(3*4)^n)/10.
		

Formula

a(n, m)= A089500(n)*(((-1)^(m+n))*(2*m+1)*((m*(m+1))^n)/((m+n+1)!*(n-m)!)).

A071952 Diagonal T(n, 4) of triangle in A071951.

Original entry on oeis.org

1, 40, 1092, 25664, 561104, 11807616, 243248704, 4950550528, 100040447232, 2013177300992, 40412056994816, 810023815790592, 16221871691714560, 324694197936160768, 6496965245491888128, 129976281056339296256
Offset: 4

Views

Author

N. J. A. Sloane, Jun 16 2002

Keywords

Crossrefs

Programs

  • GAP
    List([4..20], n-> 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315); # G. C. Greubel, Mar 16 2019
  • Magma
    [2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315: n in [4..20]]; // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    Flatten[ Table[ Sum[(-1)^{r + 4}(2r + 1)(r^2 + r)^n/((r + 5)!(4 - r)!), {r, 1, 4}], {n, 4, 20}]]
    LinearRecurrence[{40, -508, 2304, -2880}, {1, 40, 1092, 25664}, 20] (* G. C. Greubel, Mar 16 2019 *)
  • PARI
    {a(n) = 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315}; \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    [2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315 for n in (4..20)] # G. C. Greubel, Mar 16 2019
    

Formula

From Wolfdieter Lang, Nov 07 2003: (Start)
a(n+4) = A071951(n+4, 4) = (-7*2^n + 405*6^n - 2268*12^n + 2500*20^n)/630, n >= 0.
G.f.: x^4/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)*(1-5*4*x)). (End)
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n-4), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467) and n > 3. - Mircea Merca, Apr 06 2013
From G. C. Greubel, Mar 16 2019: (Start)
a(n) = 2^(n-7)*(20*3^n - 7*6^n + 10^n - 28)/315.
E.g.f.: (1 - exp(2*x))^4*(14 + 28*exp(2*x) + 28*exp(4*x) + 20*exp(6*x) + 10*exp(8*x) + 4*exp(10*x) + exp(12*x))/8!. (End)

Extensions

More terms from Robert G. Wilson v, Jun 19 2002
Definition corrected by Georg Fischer, Jul 07 2025

A016309 Expansion of 1/((1-2*x)*(1-6*x)*(1-12*x)).

Original entry on oeis.org

1, 20, 292, 3824, 47824, 585536, 7096384, 85576448, 1029436672, 12368356352, 148510974976, 1782675894272, 21395375902720, 256764101869568, 3081286768672768, 36976146501533696, 443717989683232768
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(24*12^n-15*6^n+2^n)/10: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1-6x)(1-12x)),{x,0,30}],x] (* or *) LinearRecurrence[{20,-108,144},{1,20,292},30] (* Harvey P. Dale, Jul 26 2019 *)

Formula

a(n) = A071951(n+3, 3) = (24*12^n - 15*6^n + 2^n)/10. - Wolfdieter Lang, Nov 07 2003
a(n) = 18*a(n-1) - 72*a(n-2) + 2^n; a(n) = 20*a(n-1) - 108*a(n-2) + 144*a(n-3) for n > 2. - Vincenzo Librandi, Sep 02 2011
a(n) = det(|ps(i+3,j+2)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A089274 Fifth column of the Legendre-Stirling triangle A071951.

Original entry on oeis.org

1, 70, 3192, 121424, 4203824, 137922336, 4380918784, 136378114048, 4191383868672, 127754693361152, 3873052857829376, 117001609550671872, 3526270158211870720, 106112798944292282368, 3189880933574260359168
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

This is the fifth member of the family A000079 (powers of 2), A016129, A016309, A071952, etc.

Crossrefs

Cf. A000079 (powers of 2).

Programs

  • Magma
    [(16875*(6*5)^n - 20000*(5*4)^n + 6048*(4*3)^n - 405*(3*2)^n + 2*(2*1)^n)/2520: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
    
  • Mathematica
    Table[2^(n-3)*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)/315, {n,0,30}] (* G. C. Greubel, Nov 10 2024 *)
  • SageMath
    def A089274(n): return 2^n*(5*(15)^(n+3) -2*(10)^(n+4) +28*6^(n+3) -5*3^(n+4) +2)//2520
    [A089274(n) for n in range(31)] # G. C. Greubel, Nov 10 2024

Formula

G.f.: 1/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)*(1-5*4*x)*(1-6*5*x)).
a(n) = (16875*(6*5)^n -20000*(5*4)^n +6048*(4*3)^n -405*(3*2)^n +2*(2*1)^n)/2520.
a(n) = A071951(n+5, 5), n>=0.
a(n) = det(|ps(i+5,j+4)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). [Mircea Merca, Apr 06 2013]
E.g.f.: (1/2520)*(2*exp(2*x) - 405*exp(6*x) + 6048*exp(12*x) - 20000*exp(20*x) + 16875*exp(30*x)). - G. C. Greubel, Nov 10 2024

A089511 Triangle of integers used to compute column sequences of array A078739 ((2,2)-Stirling2).

Original entry on oeis.org

1, -1, 3, 1, -6, 6, -1, 27, -108, 100, 1, -36, 216, -400, 225, -1, 135, -2160, 10000, -16875, 9261, 1, -162, 3240, -20000, 50625, -55566, 21952, -1, 567, -27216, 350000, -1771875, 4084101, -4302592, 1679616, 1, -648, 36288, -560000, 3543750, -10890936, 17210368, -13436928
Offset: 2

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The k-th column sequence (without leading zeros) of A078739 is for even k: sum(a(k,m)*((m+1)*m)^n,m=1..k-1)/D(k) and for odd k it is: ((k^2-1)/2)*sum(a(k,m)*((m+1)*m)^n,m=1..k-1)/D(k), where D(k) := A089512(k) and n>=0, k>=2.

Examples

			[1]; [ -1,3]; [1,-6,6]; [ -1,27,-108,100]; ...
a(2,1)=A089512(2)*A089275(1,0)*A089278(1,1)/A089500(1)=1*1*1/1=1;
a(3,2)=A089512(3)*A089276(1,0)*A089278(2,2)/A089500(2)=2*1*3/2=3.
a(4,3)=1*(1+18/(4*3))*24/10 =6; a(5,4)= 18*(1+8/(5*4))*2500/630=100.
k=2 column sequence of A078739 is (1*(2*1)^n)/1 = 2^n. k=3: 4*(-1*(2*1)^n + 3*(3*2)^n)/2 (see A016129).
		

Formula

a(n, m) triangle 2<=n, 1<= m <= (n-1), else 0, with a(2*k, m)= D(2*k)*sum(A089275(k, p)/((m+1)*m)^p, p=0..k-1)*A089278(2*k-1, m)/A089500(2*k-1) and a(2*k+1, m)= D(2*k+1)*sum(A089276(k, p)/((m+1)*m)^p, p=0..k-1)*A089278(2*k, m)/A089500(2*k), where D(n) := A089512(n).

A089277 Sixth column of the triangle A071951 (Legendre-Stirling).

Original entry on oeis.org

1, 112, 7896, 453056, 23232176, 1113673728, 51155215360, 2284897159168, 100157064553728, 4334351404617728, 185915811851773952, 7925465707325177856, 336395829865869340672, 14234737653310804590592
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Crossrefs

Formula

G.f.: 1/Product_{p=1..6} (1 - p*(p+1)*x) = 1/((1-2*x)*(1-6*x)*(1-12*x)*(1-20*x)*(1-30*x)*(1-42*x)).
a(n) = A071951(n+6, 6), n>=0.
a(n) = (Sum_{p=1..6} A089278(6, p)*(p*(p+1))^n)/A089500(6) = (-11*2^n + 7425*6^n - 266112*12^n + 2000000*20^n - 4640625*30^n + 3176523*42^n)/277200.
a(n) = det(|ps(i+6,j+5)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A089501 Built from superfactorials A000178.

Original entry on oeis.org

1, 6, 2880, 870912000, 637129677864960000, 3076276241856388273274880000000, 218470761021769399142244567460557619200000000000, 444747235963340607791337561259087696911923105885061120000000000000000
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

a(n) appears as a numerator in A089500.

Formula

N(n) := sfac(n-1)*sfac(2*n+1)/sfac(n+1) with sfac(n) := product(k!, k=1..n), n>=1, sfac(0) := 1. sfac(n)= A000178(n).
a(n) ~ 2^(2*n^2 + 5*n + 23/12) * n^(2*n^2 + 2*n -1/12) * Pi^n / (A * exp(3*n^2 + 2*n - 1/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
Showing 1-9 of 9 results.