A080249 Stirling-like number triangle defined by the sequence A000292=C(n+3,3).
1, 1, 1, 1, 5, 1, 1, 21, 15, 1, 1, 85, 171, 35, 1, 1, 341, 1795, 871, 70, 1, 1, 1365, 18291, 19215, 3321, 126, 1, 1, 5461, 184275, 402591, 135450, 10377, 210, 1, 1, 21845, 1848211, 8236095, 5143341, 716562, 28017, 330, 1, 1, 87381, 18503955, 166570111, 188253030, 45270813, 3069990, 67617, 495, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 5, 1; 1, 21, 15, 1; 1, 85, 171, 35, 1; 1, 341, 1795, 871, 70, 1; 1, 1365, 18291, 19215, 3321, 126, 1; 1, 5461, 184275, 402591, 135450, 10377, 210, 1; For example, 171 = 21+10*15, 35 = 15+20*1.
Formula
T(n,k) = T(n-1,k-1) + A000292(k)*T(n-1,k). Columns are generated by 1/product{k=0..n, 1-C(k+3,3)*x}.
Comments